Skip to main content

Style Transfer with Adaptation to the Central Objects of the Scene

  • Conference paper
  • First Online:
Advances in Neural Computation, Machine Learning, and Cognitive Research III (NEUROINFORMATICS 2019)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 856))

Included in the following conference series:

Abstract

Style transfer is a problem of rendering an image with some content in the style of another image, for example a family photo in the style of a painting of some famous artist. The drawback of classical style transfer algorithm is that it imposes style uniformly on all parts of the content image, which perturbs central objects on the content image (such as face and body in case of a picture with a person), and makes them unrecognizable. This work proposes a novel style transfer algorithm which automatically detects central objects on the content image, generates spatial importance mask and imposes style non-uniformly: central objects are stylized less to preserve their recognizability and other parts of the image are stylized as usual to preserve the style. Three methods of automatic central object detection are proposed and evaluated qualitatively and via a user evaluation study. Both comparisons demonstrate higher quality of stylization compared to the classical style transfer method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition. pp. 248–255. IEEE (2009)

    Google Scholar 

  2. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2414–2423 (2016)

    Google Scholar 

  3. Gooch, B., Gooch, A.: Non-photorealistic rendering. AK Peters/CRC Press, Natick (2001)

    Book  Google Scholar 

  4. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  5. Research, A.: Image stylization: history and future. https://research.adobe.com/news/image-stylization-history-and-future/. Accessed 2 July 2019

  6. Rosebrock, A.: Segmentation: a slic superpixel tutorial using python. https://www.pyimagesearch.com/2014/07/28/a-slic-superpixel-tutorial-using-python/. Accessed 2 July 2019

  7. Rosin, P., Collomosse, J.: Image and video-based artistic stylisation, vol. 42. Springer, Heidelberg (2012)

    Google Scholar 

  8. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  9. Strothotte, T., Schlechtweg, S.: Non-photorealistic Computer Graphics: Modeling, Rendering, and Animation. Morgan Kaufmann, Burlington (2002)

    Google Scholar 

  10. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: European Conference on Computer Vision, pp. 818–833. Springer, Cham (2014)

    Chapter  Google Scholar 

  11. Zhou, B., Zhao, H., Puig, X., Xiao, T., Fidler, S., Barriuso, A., Torralba, A.: Semantic understanding of scenes through the ade20k dataset. Int. J. Comput. Vis. 127(3), 302–321 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Kitov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schekalev, A., Kitov, V. (2020). Style Transfer with Adaptation to the Central Objects of the Scene. In: Kryzhanovsky, B., Dunin-Barkowski, W., Redko, V., Tiumentsev, Y. (eds) Advances in Neural Computation, Machine Learning, and Cognitive Research III. NEUROINFORMATICS 2019. Studies in Computational Intelligence, vol 856. Springer, Cham. https://doi.org/10.1007/978-3-030-30425-6_40

Download citation

Publish with us

Policies and ethics