Skip to main content

A Dynamic Ensemble Selection Framework Using Dynamic Weighting Approach

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1037))

Included in the following conference series:

Abstract

In Dynamic Classifier Selection (DCS) techniques, test sample is classified only by the most competent classifiers. Hence, the major problem in DCS is to find the measures by which competence of classifiers in a pool can be calculated to find out the most competent classifiers. To tackle these issues, we suggest a Framework for Dynamic Ensemble Selection (DES) that uses more than one criterion to calculate the base classifier’s competence level. The framework has three major steps. In first step, training data is used to create a pool consisting of different classifiers. In second step meta-classifier training is performed by extracting meta-features from training data. In third step meta-classifier uses meta-features extracted from test sample to perform an ensemble selection and to predict the final output. In this paper, we suggest some improvements in second step (training) and last step (generalization) of the framework. In training phase, four different models are used as meta-classifiers. While in generalization phase, dynamic weighting scheme is used where meta-classifiers will dynamically assign weights to selected competent classifiers based on their competence level and final decision will be aggregated using a weighting voting scheme. The modifications purposed in this paper altogether enhance performance and accuracy of the framework in contrast with other dynamic selection techniques in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Woźniak, M., Graña, M., Corchado, E.: A survey of multiple classifier systems as hybrid systems. Inf. Fusion 16, 3–17 (2014)

    Article  Google Scholar 

  2. Britto Jr., A.S., Sabourin, R., Oliveira, L.E.: Dynamic selection of classifiers as a comprehensive review. Pattern Recognit. 47(11), 3665–3680 (2014)

    Article  Google Scholar 

  3. Ko, A.H.R., Sabourin, R., Britto Jr., A.S.: From dynamic classifiers election to dynamic ensemble selection. Pattern Recognit. 41, 1735–1748 (2008)

    Article  Google Scholar 

  4. Caval, P.R., Sabourin, R., Suen, C.Y.: Dynamic selection approaches for multiple classifier systems. Neural Comput. Appl. 22(3–4), 673–688 (2013)

    Article  Google Scholar 

  5. Cavalin, P.R., Sabourin, R., Suen, C.Y.: LoGID: an adaptive framework combining local and global incremental learning for dynamic selection of ensembles of HMMs. Pattern Recognit. 45(9), 3544–3556 (2012)

    Article  Google Scholar 

  6. Woloszynski, T., Kurzynski, M., Podsiadlo, P., Stachowiak, G.W.: A measure of competence based on random classification for dynamic ensemble selection. Inf. Fusion 13(3), 207–213 (2012)

    Article  Google Scholar 

  7. Cruz, R.M.O., Sabourin, R., Cavalcanti, G.D.C.: Prototype selection for dynamic classifier and ensemble selection. Neural Comput. Appl. 29(2), 447–457 (2018)

    Article  Google Scholar 

  8. Mejri, D., Limam, M., Weihs, C.: A new dynamic weighted majority control chart for data streams. Soft Comput. 22(2), 511–522 (2018)

    Article  Google Scholar 

  9. Xiao, H., Xiao, Z., Wang, Y.: Ensemble classification based on supervised clustering for credit scoring. Appl. Soft Comput. 43, 73–86 (2016)

    Article  Google Scholar 

  10. Brun, A.L., Britto Jr., A.S., Oliveira, L.S., Enembreck, F., Sabourin, R.: A framework for dynamic classifier selection oriented by the classification problem difficulty. Pattern Recognit. 76, 175–190 (2018)

    Article  Google Scholar 

  11. Xia, Y., Liu, C., Da, B., Xie, F.: A novel heterogeneous ensemble credit scoring model based on bstacking approach. Expert Syst. Appl. 93, 182–199 (2018)

    Article  Google Scholar 

  12. Liu, X., Li, Q., Li, T., Chen, D.: Differentially private classification with decision tree ensemble. Appl. Soft Comput. 62, 807–816 (2018)

    Article  Google Scholar 

  13. van Rijn, J.N., Holmes, G., Pfahringer, B., Vanschoren, J.: The online performance estimation framework: heterogeneous ensemble learning for data streams. Mach. Learn. 107, 1–28 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cruz, R.M.O., Robert, S., Cavalcanti, G.D.C.: META-DES. Oracle: meta-learning and feature selection for dynamic ensemble selection. Inf. Fusion 38, 84–103 (2017)

    Article  Google Scholar 

  15. Oliveira, D.V.R., Cavalcanti, G.D.C., Sabourin, R.: Online pruning of base classifiers for Dynamic Ensemble Selection. Pattern Recognit. 72, 44–58 (2017)

    Article  Google Scholar 

  16. Ye, R., Dai, Q.: A novel greedy randomized dynamic ensemble selection algorithm. Neural Process. Lett. 47(2), 565–599 (2018)

    Google Scholar 

  17. Krawczyk, B., Minku, L.L., Gama, J., Stefanowski, J., Woźniak, M.: Ensemble learning for data stream analysis: a survey. Inf. Fusion 37, 132–156 (2017)

    Article  Google Scholar 

  18. Pérez-Gállego, P., Castaño, A., Quevedo, J.R., del Coz, J.J.: Dynamic ensemble selection for quantification tasks. Inf. Fusion 45, 1–15 (2018)

    Article  Google Scholar 

  19. Roy, A., Cruz, R.M.O., Sabourin, R., Cavalcanti, G.D.C.: A study on combining dynamic selection and data preprocessing for imbalance learning. Neurocomputing 286, 179–192 (2018)

    Article  Google Scholar 

  20. García, S., Zhang, Z.-L., Altalhi, A., Alshomrani, S., Herrera, F.: Dynamic ensemble selection for multi-class imbalanced datasets. Inf. Sci. 445, 22–37 (2018)

    Article  MathSciNet  Google Scholar 

  21. Cheriguene, S., Azizi, N., Dey, N., Ashour, A.S., Ziani, A.: A new hybrid classifier selection model based on mRMR method and diversity measures. Int. J. Mach. Learn. Cybern. 10, 1–16 (2018)

    Google Scholar 

  22. Pratama, M., Pedrycz, W., Lughofer, E.: Evolving ensemble fuzzy classifier. IEEE Trans. Fuzzy Syst. 26, 2552–2567 (2018)

    Article  Google Scholar 

  23. Khamar, M., Eftekhari, M.: Multi-Manifold based Rotation Forest for classification. Appl. Soft Comput. 68, 626–635 (2018)

    Article  Google Scholar 

  24. Almeida, P.R.L., Oliveira, L.S., Britto Jr., A.S., Sabourin, R.: Adapting dynamic classifier selection for concept drift. Expert. Syst. Appl. 104, 67–85 (2018)

    Article  Google Scholar 

  25. Feng, X., Xiao, Z., Zhong, B., Qiu, J., Dong, Y.: Dynamic ensemble classification for credit scoring using soft probability. Appl. Soft Comput. 65(C), 139–151 (2018)

    Article  Google Scholar 

  26. Cruz, R.M., Sabourin, R., Cava1canti, G.D., Ren, T.l.: META-DES: a dynamic ensemble selection framework using meta-learning. Pattern Recognit. 48(5), 1925–1935 (2015)

    Article  Google Scholar 

  27. Breiman, L.: Bagging predictors. Machine Learn. 24, 123–140 (1996)

    MATH  Google Scholar 

  28. Fernandez-Delgado, M., Cernadas, E., Barro, S., Amorim, D.: Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 15, 3133–3181 (2014). [Online] Author, F., Author, S.: Title of a proceedings paper. In: Editor, F., Editor, S. (eds.) CONFERENCE 2016, LNCS, vol. 9999, pp. 1–13. Springer, Heidelberg (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiman Qadeer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qadeer, A., Qamar, U. (2020). A Dynamic Ensemble Selection Framework Using Dynamic Weighting Approach. In: Bi, Y., Bhatia, R., Kapoor, S. (eds) Intelligent Systems and Applications. IntelliSys 2019. Advances in Intelligent Systems and Computing, vol 1037. Springer, Cham. https://doi.org/10.1007/978-3-030-29516-5_25

Download citation

Publish with us

Policies and ethics