Skip to main content

A Half Century of Developments in Desert Geomorphology and the Place of A. T. Grove

  • Chapter
  • First Online:
Geography in Britain after World War II

Abstract

Over the last half century there have been many major advances in the study of desert landforms and land-forming processes. Some of these have been facilitated by the establishment of permanent research stations, and others have resulted from the development of applied work on desert hazards, and from the desire to find analogues for desert phenomena on Mars and other planetary bodies. However, some of the most striking developments have arisen as a result of the availability of a range of new techniques: remote sensing from space, the use of data loggers to monitor processes, laboratory simulations of both weathering and dune formation, the use of Ground Penetrating Radar to look at dune structures, the use of GPS to facilitate survey work, the employment of optical dating and other techniques to date dunes, dust deposits and other landforms, the use of new petrographic and mineralogical techniques to study surface materials, the development of computer modelling; and the application of new techniques for high resolution environmental reconstruction. As a result of these developments we now have greatly improved knowledge of desert processes, the history of deserts, and the distribution and significance of many landforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allchin, B., Goudie, A. S., & Hegde, K. T. M. (1978). The prehistory and palaeogeography of the Great Indian Desert. London: Academic Press.

    Google Scholar 

  • Alonso, R. N., Jordan, T. E., Tubbutt, K. T., & Vandervoort, D. S. (1999). Giant evaporite belts of the Neogene central Andes. Geology, 19, 401–404.

    Article  Google Scholar 

  • Amundson, R. et al., (2012). Geomorphic evidence for the late Pliocene onset of hyperaridity in the Atacama Desert. Bulletin of the Geological Society of America. https://doi.org/10.1130/b30445.1.

    Article  Google Scholar 

  • Atkinson, O. A. C., Thomas, D. S. G., Goudie, A. S., & Bailey, R. M. (2011). Late Quaternary chronology of major dune ridge development in the northeast Rub’ al-Khali, United Arab Emirates. Quaternary Research, 76, 93–105.

    Article  Google Scholar 

  • Atkinson, O. A. C., Thomas, D. S. G., Goudie, A. S., & Parker, A. G. (2012). Holocene development of multiple dune generations in the northeast Rub’ al-Khali, United Arab Emirates. The Holocene, 22, 179–181.

    Article  Google Scholar 

  • Bagnold, R. A. (1941). The physics of blown sand and desert dunes. London: Methuen.

    Google Scholar 

  • Baker, V. R., Pickup, G., & Polach, H. A. (1983). Desert palaeofloods in central Australia. Nature, 301, 502–504.

    Article  Google Scholar 

  • Boggs, D. A., Boggs, G. S., Eliot, I., & Knott, B. (2006). Regional patterns of salt lake morphology in the lower Yarra Yarra drainage system of Western Australia. Journal of Arid Environments, 64, 97–115.

    Article  Google Scholar 

  • Bouchette, F., et al. (2010). Hydrodynamics in Holocene Lake Mega-Chad. Quaternary Research, 73, 226–236.

    Article  Google Scholar 

  • Bourgeois, O., et al. (2008). A surface dissolution/precipitation model for the development of lakes on Titan, based on an arid terrestrial analogue: The pans and calcretes of Etosha (Namibia). Lunar and Planetary Science, 39, 1733.

    Google Scholar 

  • Bourke, M., & Goudie, A. S. (2009). Varieties of barchan form in the Namib Desert. Aeolian Research, 1, 45–54.

    Google Scholar 

  • Bourke, M. C., Lancaster, N., Fenton, L. K., Parteli, E. J. R., Zimbelman, J. R., & Radebaugh, J. (2010). Extraterrestrial dunes: An introduction to the special issue on planetary dune systems. Geomorphology, 121, 1–14.

    Article  Google Scholar 

  • Bristow, C. S., Lancaster, N., & Duller, G. A. T. (2005). Combining ground penetrating radar surveys and optical dating to determine dune migration in Namibia. Journal of the Geological Society, 162, 315–321.

    Article  Google Scholar 

  • Brooks, N., Chiapello, I., Di Lernia, S., Drake, N., Legrand, M., Moulin, C., et al. (2005). The climate-environment-society nexus in the Sahara from prehistoric times to the present day. Journal of North African Studies, 10, 253–292.

    Article  Google Scholar 

  • Burrough, S. L., Thomas, D. S. G., & Bailey, R. M. (2009). Mega-lake in the Kalahari: A late Pleistocene record of the Palaeolake Makgadikgadi system. Quaternary Science Reviews, 28, 1392–1411.

    Article  Google Scholar 

  • Bywater-Reyes, S., Carrapa, B., Clementz, M., & Schoenbohm, L. (2010). Effect of late Cenozoic aridification on sedimentation in the Eastern Cordillera of northwest Argentina (Angastaco basin). Geology, 38, 235–238.

    Article  Google Scholar 

  • Clarke, J. (2011). Extraterrestrial arid surface processes. In D. S. G. Thomas (Ed.), Arid zone geomorphology (pp. 61–82). Chichester: Wiley Blackwell.

    Chapter  Google Scholar 

  • Clos-Arceduc, A. (1969). Essai d’explication des formes dunaires sahariennes. Etudes de Photo-Interpretation 4 (p. 66). Institut Géographique National.

    Google Scholar 

  • Cooke, R. U., & Reeves, R. W. (1976). Arroyos and environmental change in the American South-West. Oxford: Clarendon Press.

    Google Scholar 

  • Cooke, R. U., Brunsden, D., Doornkamp, J. C., & Jones, D. K. C. (1982). Urban geomorphology in drylands. Oxford: Oxford University Press.

    Google Scholar 

  • Cooke, R. U., Warren, A., & Goudie, A. (1993). Desert geomorphology. London: UCL Press.

    Google Scholar 

  • Craddock, R. A. (2011). Aeolian processes on the terrestrial planets: Recent observations and future focus. Progress in Physical Geography, 36, 110–124.

    Article  Google Scholar 

  • Diester-Haass, L., & Schrader, H. J. (1979). Neogene coastal upwelling history off north-west and south-west Africa. Marine Geology, 29, 39–53.

    Article  Google Scholar 

  • Dietze, M., & Kleber, A. (2012). Control of lateral processes to stone pavement formation in deserts inferred from clast orientation patterns. Geomorphology, 139–140, 172–187.

    Article  Google Scholar 

  • Doornkamp, J. C., Brunsden, D., & Jones, D. K. C. (Eds.). (1980). Geology, geomorphology and pedology of Bahrain. Norwich: Geo Abstracts.

    Google Scholar 

  • Drake, N., & Bristow, C. (2006). Shorelines in the Sahara: Geomorphological evidence for an enhanced monsoon from palaeolake Megachad. The Holocene, 16, 901–911.

    Article  Google Scholar 

  • Dupont-Nivet, G., Krijgsman, W., Langereis, C. G., Abels, H. A., Dai, S., & Fang, X. (2007). Tibetan plateau aridification linked to global cooling at the Eocene-Oligocene transition. Nature, 445, 635–638.

    Article  Google Scholar 

  • El-Baz, F., & Maxwell, T. A. (Eds.). (1982). Desert landforms of southwest Egypt: A basis for comparison with Mars. Washington, DC: NASA.

    Google Scholar 

  • Evans, I. S. (1970). Salt crystallization and rock weathering, a review. Revue de Géomorphologie Dynamique, 19, 153–177.

    Google Scholar 

  • Evenari, M., Shanan L., & Tadmor, N. H. (1983). The negev: The challenge of a desert. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Fett, W. (1958). Der atmosphärische Staub (p. 309). Berlin: Vebb. Deutscher Verlagder Wissenschaften.

    Google Scholar 

  • Fitzsimmons, K. E., Miller, G. H., Spooner, N. A., & Magee, J. W. (2012). Aridity in the monsoon zone as indicated by desert dune formation in the Gregory Lakes basin, northwestern Australia. Australian Journal of Earth Sciences, 59, 469–478.

    Article  Google Scholar 

  • Foerster, V., Junginger, A., Langkamp, O., Gebru, T., Asrat, A., Umer, M., et al. (2012). Climatic change recorded in the sediments of the Chew Bahir basin, southern Ethiopia, during the last 45,000 years. Quaternary International, 274, 25–37.

    Article  Google Scholar 

  • Fryberger, S. G., & Dean, G. (1979). Dune forms and wind regime (pp. 305–397) (United States Geological Survey Professional Paper 1052).

    Google Scholar 

  • Fujioka, T., & Chappell, J. (2010). History of Australian aridity: Chronology in the evolution of arid landscapes. Geological Society of London Special Publication, 346, 121–139.

    Article  Google Scholar 

  • Garreaud, R. D., Molina, A., & Farias, M. (2010). Andean uplift, ocean cooling and Atacama hyperaridity. Earth and Planetary Science Letters, 292, 39–50.

    Article  Google Scholar 

  • Goudie, A., & Pye, K. (1983). Chemical sediments and geomorphology. London: Academic Press.

    Google Scholar 

  • Goudie, A. S., & Seely, M. (2011). World Heritage desert landscapes: Potential priorities for the recognition of desert landscapes and geomorphological sites on the World Heritage List. Gland, Switzerland: IUCN.

    Google Scholar 

  • Goudie, A. S., & Viles, H. A. (1997). Salt weathering hazard. Chichester: Wiley.

    Google Scholar 

  • Goudie, A. S. (2002). Great warm deserts of the world—Landscapes and evolution. Oxford: Oxford University Press.

    Google Scholar 

  • Goudie, A. S. (2008). The history and nature of wind erosion in deserts. Annual Review of Earth and Planetary Science, 36, 97–119.

    Article  Google Scholar 

  • Goudie, A. S. (2011). Parabolic dunes: Distribution, form, morphology and change. Annals of Arid Zone, 50, 1–7.

    Google Scholar 

  • Goudie, A. S. (2013). Arid and semi-arid geomorphology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Goudie, A. S., & Wells, G. L. (1995). The nature, distribution and formation of pans in arid zones. Earth-Science Reviews, 38, 1–69.

    Article  Google Scholar 

  • Goudie, A. S., Stokes, S., Livingstone, I., Bailiff, I. K., & Allison, R. J. (1993). Post-depositional modification of the linear sand ridges of the west Kimberley area of north-west Australia. Geographical Journal, 159, 306–317.

    Article  Google Scholar 

  • Goudie, A. S., Colls, A., Stokes, S., Parker, A., White, K., & Al-Farraj, A. (2000). Latest Pleistocene and Holocene dune construction at the north-eastern edge of the Rub Al Khali, United Arab Emirates. Sedimentology, 47, 1011–1021.

    Article  Google Scholar 

  • Goudie, A. S., & Middleton, N. J. (2006). Desert dust in the global system. Heidelberg: Springer Verlag.

    Google Scholar 

  • Grove, A. T. (1958). The ancient erg of Hausaland and similar formations on the south side of the Sahara. Geographical Journal, 124, 528–533.

    Article  Google Scholar 

  • Grove, A. T. (1959). A note on the former extent of lake Chad. Geographical Journal, 125, 465–467.

    Article  Google Scholar 

  • Grove, A. T. (1969). Landforms and climatic change in the Kalahari and Ngamiland. Geographical Journal, 135, 191–212.

    Article  Google Scholar 

  • Grove, A. T. (1973). Desertification in the African environment. In D. Dalby & R. J. Harrison Church (Eds.), Drought in Africa (pp. 33–45, 117–119). London: SOAS, Centre for African Studies.

    Google Scholar 

  • Grove, A. T., & Pullan, R. A. (1964). Some aspects of the Pleistocene palaeogeography of the Chad basin. Samaru Miscellaneous Papers, 3, 230–245.

    Google Scholar 

  • Grove, A. T., & Warren, A. (1968). Quaternary landforms and climate on the south side of the Sahara. Geographical Journal, 134, 194–208.

    Article  Google Scholar 

  • Grove, A. T., Street, F. A., & Goudie, A. S. (1975). Former lake levels and climatic change in the rift valley of southern Ethiopia. Geographical Journal, 141, 177–202.

    Article  Google Scholar 

  • Halfen, A. F., Johnson, W. C., Hanson, P. R., Woodburn, T. L., Young, A. R., & Ludvigson, G. A. (2012). Activation history of the Hutchinson dunes in east-central Kansas, USA during the past 2200 years. Aeolian Research, 5, 9–20.

    Article  Google Scholar 

  • Hartley, A. J., & May, G. (1998). Miocene gypcretes from the Calama Basin, northern Chile. Sedimentology, 45, 351–364.

    Article  Google Scholar 

  • Harvey, A. M. (1997). The role of alluvial fans in arid zone fluvial systems. In D. S. G. Thomas (Ed.), Arid zone geomorphology (pp. 231–259). Chichester: Wiley.

    Google Scholar 

  • Howard, A. D., & Walmsley, J. L. (1985). Simulation model of isolated dune sculpture by wind. In Proceedings of International Workshop on the Physics of Blown Sand (pp. 377–391). Aarhus, Denmark: University of Aarhus.

    Google Scholar 

  • Howard, A. D., Morton, J. B., Gad-el-Hak, M., & Pierce, D. B. (1978). Sand transport model of barchan dune equilibrium. Sedimentology, 25(3), 307–338.

    Article  Google Scholar 

  • Hülle, D., et al. (2010). OSL dating of sediments from the Gobi Desert, southern Mongolia. Quaternary Geochronology, 5, 107–113.

    Article  Google Scholar 

  • Hunt, J. C. R., Leibovich, S., & Richards, K. J. (1988). Turbulent wind flow over smooth hills. Quarterly Journal of the Royal Meteorological Society, 114, 1435–1470.

    Article  Google Scholar 

  • Kawamura, R. (1951). Study of sand movement by wind (Report of the Institute of Science and Technology 5, no. 314). University of Tokyo.

    Google Scholar 

  • Knott, P., & Warren, A. (1981). Aeolian processes. In A. S. Goudie (Ed.), Geomorphological techniques (pp. 226–246). London: Allen and Unwin.

    Google Scholar 

  • Kurth, G., Phillips, F. M., Reheis, M. C., Redwine, J. L., & Paces, J. B. (2011). Cosmogenic nuclide and uranium-series dating of old, high shorelines in the western Great Basin, USA. Bulletin of the Geological Society of America, 123, 744–768.

    Article  Google Scholar 

  • Laity, J. E., & Malin, M. C. (1985). Sapping processes and the development of theatre-headed valley networks on the Colorado Plateau. Geological Society of America Bulletin, 96, 203–217.

    Article  Google Scholar 

  • Lancaster, N. (1978). The pans of the southern Kalahari, Botswana. Geographical Journal, 144, 81–98.

    Article  Google Scholar 

  • Latrubesse, E. M., & Nelson, B. W. (2001). Evidence for Late Quaternary aeolian activity in the Roraima-Guyana Region. CATENA, 43, 63–80.

    Article  Google Scholar 

  • Le Gall, A., et al. (2012). Latitudinal and altitudinal controls of Titan’s dune field morphometry. Icarus, 217, 231–242.

    Article  Google Scholar 

  • Lézine, A.-M., Hély, C., Grenier, C., Braconnot, P., & Krinner, G. (2011). Sahara and Sahel vulnerability to climate changes, lessons from Holocene hydrological data. Quaternary Science Reviews, 30, 3001–3012.

    Article  Google Scholar 

  • Livingstone, I. (1993). A decade of surface change on a Namib linear dune. Earth Surface Processes and Landforms, 18, 661–664.

    Article  Google Scholar 

  • Livingstone, I., Wiggs, G. F. S., & Weaver, C. M. (2007). Geomorphology of desert sand dunes: A review of recent progress. Earth-Science Reviews, 80, 239–257.

    Article  Google Scholar 

  • Livingstone, I., Bristow, C., Bryant, R. G., Bullard, J., White, K., Wiggs, G. F. S., et al. (2010). The Namib Sand Sea digital database of aeolian dunes and key forcing variables. Aeolian Research, 2, 93–104.

    Article  Google Scholar 

  • Lomax, J., Hilgers, A., & Radtke, U. (2011). Palaeoenvironmental change recorded in the palaeodunefields of the western Murray Basin, South Australia—New data from single grain OSL-dating. Quaternary Science Reviews, 30, 723–726.

    Article  Google Scholar 

  • Londoño, A. C., Forman, S. L., Eichler, T., & Pierson, J. (2012). Episodic eolian deposition in the past ca. 50,000 years in the Alto Ilo dune field, southern Peru. Palaeogeography, Palaeoclimatology, Palaeoecology, 346, 12–24.

    Article  Google Scholar 

  • Lorenz, R. D., Jackson, B., & Hayes, A. (2010). Racetrack and Bonnie Claire: Southwestern US playa lakes as analogs for Ontario Lacus, Titan. Planetary and Space Science, 58, 724–731.

    Article  Google Scholar 

  • Mainguet, M., & Chemin, M.-C. (1990). Le massif du Tibesti dans le système éolien du Sahara. Berliner Geographische Studien, 30, 261–276.

    Google Scholar 

  • Mainguet, M. (1968). Le Bourkou. Aspects d’un modelé éolien. Annales de Géographie, 77, 296–322.

    Article  Google Scholar 

  • Malin, M. C. (1974). Salt weathering on Mars. Journal of Geophysical Research, 79, 3889–3894.

    Article  Google Scholar 

  • Mann, G. A., Clarke, J. D. A., & Gostin, V. A. (2004). Surveying for Mars analogue research sites in the central Australian deserts. Australian Geographical Studies, 42, 116–124.

    Article  Google Scholar 

  • Marticorena, B. (2008). A tribute to Dale Gillette. Journal of Geophysical Research, 113. https://doi.org/10.1029/2007jf000785.

  • McCauley, J. F., Grolier, M. J., & Breed, C. S. (1977a). Yardangs. In D. O. Doehring (Ed.), Geomorphology in arid regions (pp. 233–269). Proceedings 8th Annual Geomorphology Symposium.

    Google Scholar 

  • McCauley, J. F., Grolier, M. J., & Breed, C. S. (1977b). Yardangs of Peru and other desert regions. USGS Interagency Report: Astrogeology, 81, 177.

    Google Scholar 

  • McFadden, L. D., Wells, S. G., & Jercinovich, M. J. (1987). Influences of eolian and pedogenic processes on the origin and evolution of desert pavements. Geology, 15, 504–508.

    Article  Google Scholar 

  • McFadden, L. D., McDonald, E. V., Wells, S. G., Anderson, K., Quake, J., & Forman, S. L. (1998). The vesicular layer and carbonate collars of desert soils and pavements: Formation, age and relation to climate change. Geomorphology, 24, 101–145.

    Article  Google Scholar 

  • McFadden, L. D., Eppes, M. C., Gillespie, A. R., & Hallet, B. (2005). Physical weathering in arid landscapes due to diurnal variation in the direction of solar heating. Bulletin Geological Society of America, 117, 161–173.

    Article  Google Scholar 

  • McKee, E. D. (Ed.) (1979). A study of global sand seas (US Geological Survey Professional Paper 1052).

    Google Scholar 

  • McTainsh, G. H. (1999). Dust transport and deposition. In A. S. Goudie, I. Livingstone, & S. Stokes (Eds.), Aeolian environments, sediments and landforms (pp. 181–211). Chichester: Wiley.

    Google Scholar 

  • McTainsh, G. H. (1989). Quaternary aeolian dust processes and sediments in the Australian region. Quaternary Science Reviews, 8(3), 235–253.

    Article  Google Scholar 

  • Miao, Y., Herrmann, M., Wu, F., Yan, X., & Yang, S. (2012). What controlled mid-late Miocene long-term aridification in Central Asia?—Global cooling or Tibetan Plateau uplift: A review. Earth-Science Reviews, 112, 155–172.

    Article  Google Scholar 

  • Molaro, J. L., & McKay, C. P. (2010). Processes controlling rapid temperature variations on rock surfaces. Earth Surface Processes and Landforms, 35, 501–507.

    Google Scholar 

  • Molnar, P., & Rajagopalan, B. (2012). Late Miocene upward and outward growth of eastern Tibet and decreasing monsoon rainfall over the northwestern Indian subcontinent since ~10 Ma. Geophysical Research Letters, 39, L09702. https://doi.org/10.1029/2012GL051305.

    Article  Google Scholar 

  • Munro, R. N., Deckers, J., Haile, M., Grove, A. T., Poesen, J., & Nyssen, J. (2008). Soil landscapes, land cover change and erosion features of the Central Plateau region of Tigrai, Ethiopia: Photo-monitoring with an interval of 30 years. CATENA, 75(1), 55–64.

    Article  Google Scholar 

  • Nanson, G. C., Rust, B. R., & Taylor, G. (1986). Coexistent mud braids and anastomosing channels in an arid-zone river: Cooper Creek, central Australia. Geology, 14(2), 175–178.

    Article  Google Scholar 

  • Nash, D., & McLaren, S. (2007). Geochemical sediments and landscape. Oxford: Blackwell.

    Book  Google Scholar 

  • Nickling, W. G., & McKenna Neuman, C. (1999). Recent investigations of airflow and sediment transport over desert dunes. In A. S. Goudie, I. Livingstone, & S. Stokes (Eds.), Aeolian environments, sediments and landforms (pp. 15–47). Chichester: Wiley.

    Google Scholar 

  • Nickling, W. G. (1994). Aeolian sediment transport and deposition. In K. Pye (Ed.), Sediment transport and depositional processes (pp. 293–350). Oxford: Blackwell.

    Google Scholar 

  • Ollier, C. D. (1963). Insolation weathering: Examples from central Australia. American Journal of Science, 261, 376–381.

    Article  Google Scholar 

  • Parker, A. G., Goudie, A. S., Stokes, S., White, K., Hodson, M. J., Manning, M., et al. (2006). A record of Holocene climate change from lake geochemical analyses in southeastern Arabia. Quaternary Research, 66(3), 465–476.

    Article  Google Scholar 

  • Parsons, A. J., Abrahams, A. D., & Wainwright, J. (1996). Responses of interrill runoff and erosion rates to vegetation change in southern Arizona. Geomorphology, 14, 311–317.

    Article  Google Scholar 

  • Pelletier, J. D. (2010). How do pediments form? A numerical modeling investigation with comparison to pediments in southern Arizona. Bulletin of the Geological Society of America, 122, 1815–1829.

    Article  Google Scholar 

  • Placzek, C., et al. (2009). Climate in the dry central Andes over geologic, millennial, and interannual timescales. Annals of the Missouri Botanic Garden, 96, 386–397.

    Article  Google Scholar 

  • Preusser, F. (2009). Chronology of the impact of Quaternary climate change on continental environments in the Arabian Peninsula. CR Geoscience, 341, 621–632.

    Article  Google Scholar 

  • Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E., & Gill, T. E. (2002). Environmental characterisation of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Reviews of Geophysics, 40, 2–31.

    Article  Google Scholar 

  • Qiang, X. K., et al. (2011). New eolian red clay sequence on the western Chinese Loess Plateau linked to onset of Asian desertification about 25 Ma ago. Science China Earth Sciences, 54, 136–144.

    Article  Google Scholar 

  • Quade, J., Cerling, T. E., & Bowman, J. R. (1989). Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature, 342, 163–166.

    Article  Google Scholar 

  • Radebaugh, J., Lorenz, R., Farr, T., Paillou, P., Savage, C., & Spencer, C. (2010). Linear dunes on Titan and earth: Initial remote sensing comparisons. Geomorphology, 121, 122–132.

    Article  Google Scholar 

  • Rech, J. A., Quade, J., & Betancourt, J. L. (2002). Late Quaternary paleohydrology of the central Atacama Desert (lat 22o–24oS), Chile. Bulletin of the Geological Society of America, 114, 334–348.

    Article  Google Scholar 

  • Rice, A. (1976). Insolation warmed over. Geology, 4, 61–62.

    Article  Google Scholar 

  • Ridley, D. A., Heald, C. L., & Ford, B. (2012). North African dust export and deposition: A satellite and model perspective. Journal of Geophysical Research, 117, D02202. https://doi.org/10.1029/2011JD016794.

    Article  Google Scholar 

  • Roskin, J., Porat, N., Tsoar, H., Blumberg, D. G., & Zander, A. M. (2011). Age, origin and climatic controls on vegetated linear dunes in the northwestern Negev Desert (Israel). Quaternary Science Reviews, 30, 1649–1674.

    Article  Google Scholar 

  • Ruddiman, W. F. (2001). Earth’s climate: Past and future. New York: W. H. Freeman.

    Google Scholar 

  • Saini, H. S., & Mujtaba, S. A. I. (2012). Depositional history and palaeoclimatic variations at the northeastern fringe of Thar Desert, Haryana plains, India. Quaternary International, 250, 37–48.

    Article  Google Scholar 

  • Sarre, R. D. (1987). Aeolian sand transport. Progress in Physical Geography, 11, 157–182.

    Article  Google Scholar 

  • Schepanski, K., Tegen, I., & Macke, A. (2012). Comparison of satellite based observations of Saharan dust source areas. Remote Sensing of Environment, 123, 90–97.

    Article  Google Scholar 

  • Schick, A., & Lekach, J. (1993). An evaluation of two ten-year sediment budgets, Nahal Yael, Israel. Physical Geography, 14, 225–238.

    Article  Google Scholar 

  • Schnepfleitner, H., Sass, O., Fruhmann, S., Viles, H., & Goudie, A. (2016). A multi-method investigation of temperature, moisture and salt dynamics in tafoni (Tafraoute, Morocco). Earth Surface Processes and Landforms, 41, 473–485.

    Article  Google Scholar 

  • Schuster, M., et al. (2009). Chad Basin: Paleoenvironments of the Sahara since the Late Miocene. CR Geoscience, 341, 603–611.

    Article  Google Scholar 

  • Singhvi, A. K., & Porat, N. (2008). Impact of luminescence dating on geomorphological and palaeoclimate research in drylands. Boreas, 37, 536–558.

    Article  Google Scholar 

  • Singhvi, A. K., et al. (2010). A ~200 ka record of climatic change and dune activity in the Thar Desert, India. Quaternary Science Reviews, 29, 3095–3105.

    Article  Google Scholar 

  • Smith, G. I. (2009). Late Cenozoic geology and lacustrine history of Searles Valley, Inyo and San Bernadino Counties, California (US Geological Survey Professional Paper, 1727).

    Google Scholar 

  • Smith, G. I., & Street-Perrott, F. A. (1983). Pluvial lakes of the western United States. In S. C. Porter (Ed.), Late Quaternary environments of the United States, 1: The late Pleistocene (pp. 190–212). London: Longman.

    Google Scholar 

  • Soderblom, L. A., et al. (2007). Topography and geomorphology of the Huygens landing site on Titan. Planetary and Space Science, 55, 2015–2024.

    Article  Google Scholar 

  • Sperling, C. H. B., & Cooke, R. U. (1985). Laboratory simulation of rock weathering by salt crystallization and hydration processes in hot, arid environments. Earth Surface Processes and Landforms, 10(6), 541–555.

    Article  Google Scholar 

  • Stokes, S., Goudie, A. S., Ballard, J., Gifford, C., Samieh, S., Embabi, N., et al. (1999). Accurate dune displacement and morphometric data using kinematic GPS. Zeitschrift für Geomorphologie, Supplementband, 116, 195–214.

    Google Scholar 

  • Stone, A. E. C., & Thomas, D. S. G. (2013). Casting new light on late Quaternary environmental and palaeohydrological change in the Namib Desert: A review of the application of optically stimulated luminescence in the region. Journal of Arid Environments, 93, 40–58.

    Article  Google Scholar 

  • Street, F. A., & Grove, A. T. (1979). Global maps of lake-level fluctuations since 30,000 B.P. Quaternary Research, 12, 83–118.

    Article  Google Scholar 

  • Swezey, C. S., Fitzwater, B. A., Whittecar, G. R., Mahan, S. A., Garrity, C. P., González, W. B. A., et al. (2016). The Carolina Sandhills: Quaternary eolian sand sheets and dunes along the updip margin of the Atlantic Coastal Plain province, southeastern United States. Quaternary Research, 86(3), 271–286.

    Article  Google Scholar 

  • Telfer, M. W., & Thomas, D. S. G. (2007). Late Quaternary linear dune accumulation and chronostratigraphy of the southwestern Kalahari: Implications for aeolian palaeoclimatic reconstructions and predictions of future dynamics. Quaternary Science Reviews, 26, 2617–2630.

    Article  Google Scholar 

  • Thomas, D. S. G. (Ed.). (2011). Arid zone geomorphology (3rd ed.). Chichester: Wiley-Blackwell.

    Google Scholar 

  • Thomas, D. S. G., Knight, M., & Wiggs, G. F. S. (2005). Remobilization of southern African desert dune systems by twenty-first century global warming. Nature, 435, 1218–1221.

    Article  Google Scholar 

  • Tooth, S. (2009). Arid geomorphology: Emerging research themes and new frontiers. Progress in Physical Geography, 33, 251–287.

    Article  Google Scholar 

  • Trigo, I. F., Monteiro, I. T., Olesen, F., & Kabsch, E. (2008). An assessment of remotely sensed land surface temperature. Journal of Geophysical Research, 113, D17108. https://doi.org/10.1029/2008JD010035.

    Article  Google Scholar 

  • Tripaldi, A., & Forman, S. L. (2007). Geomorphology and chronology of late Quaternary dune fields of western Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology, 251, 300–320.

    Article  Google Scholar 

  • Tsoar, H. (1978). The dynamics of longitudinal dunes (Final Technical Report DA-ERO 76-G-072). London: European Research Office, US Army.

    Google Scholar 

  • Vargas, E., Velloso, R. Q., Chávez, L. E., Gusmão, L., & Amaral, G. P. (2012). On the effect of thermally induced stresses in failures of some rock slopes in Rio de Janeiro, Brazil. Rock Mechanics and Rock Engineering. https://doi.org/10.1007/s00603-012-0247-9.

    Article  Google Scholar 

  • Viles, H. A. (2005). Microclimate and weathering in the Central Namib Desert, Namibia. Geomorphology, 67, 189–209.

    Article  Google Scholar 

  • Vita-Finzi, C. (1969). The Mediterranean valleys: Geological changes in historical times. Cambridge: Cambridge University Press.

    Google Scholar 

  • Vita-Finzi, C. (1996). In W. M. Adams, A. Goudie, & A. R. Orme (Eds.), The physical geography of Africa (pp. xix–xxii). Oxford: Oxford University Press.

    Google Scholar 

  • Wainwright, J., Parsons, A. J., & Abrahams, A. D. (1995). A simulation study of the role of raindrop erosion in the formation of desert pavement. Earth Surface Processes and Landforms, 20, 277–291.

    Article  Google Scholar 

  • Ward, J. D. (1988). Eolian, fluvial and pan (playa) facies of the Tertiary Tsondab Sandstone Formation in the central Namib Desert, Namibia. Sedimentary Geology, 55, 143–162.

    Article  Google Scholar 

  • Warren, A. (1976). Morphology and sediments of the Nebraska Sand Hills in relation to Pleistocene winds and the development of aeolian bedforms. Journal of Geology, 84, 685–700.

    Article  Google Scholar 

  • Washington, R., Todd, M., Middleton, N., & Goudie, A. S. (2003). Global dust storm source areas determined by the Total Ozone Monitoring Spectrometer and ground observations. Annals of the Association of American Geographers, 93, 297–313.

    Article  Google Scholar 

  • Wasson, R. J., & Hyde, R. (1981). Factors determining desert dune type. Nature, 304, 337–339.

    Article  Google Scholar 

  • Wells, G. L., & Zimbelman, J. R. (1997). Extraterrestrial and surface processes. In D. S. G. Thomas (Ed.), Arid zone geomorphology: Process, form and change in drylands (2nd ed., pp. 659–690). Chichester: Wiley.

    Google Scholar 

  • Wells, S. G., McFadden, L. D., Poths, J., & Olinger, C. T. (1995). Cosmogenic 3He surface-exposure dating of stone pavements: Implications for landscape evolution in deserts. Geology, 23, 613–616.

    Article  Google Scholar 

  • Werner, B. T. (1995). Eolian dunes: Computer simulations and attractor interpretation. Geology, 23, 1107–1110.

    Article  Google Scholar 

  • Wiggs, G. F., Livingstone, I., & Warren, A. (1996). The role of streamline curvature in sand dune dynamics: Evidence from field and wind tunnel measurements. Geomorphology, 17(1–3), 29–46.

    Article  Google Scholar 

  • Williams, S. H., & Zimbelman, J. R. (1994). Desert pavement evolution: An example of the role of sheetflood. Journal of Geology, 102, 243–248.

    Article  Google Scholar 

  • Williams, M. (2014). Climate change in deserts. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Wilson, J. S., & Pitts, J. P. (2010). Illuminating the lack of consensus among descriptions of earth history data in the North American deserts: A resource for biologists. Progress in Physical Geography, 34, 419–441.

    Article  Google Scholar 

  • Wilson, I. G. (1972). Aeolian bedforms—Their development and origins. Sedimentology, 19, 173–210.

    Article  Google Scholar 

  • Wood, Y. A., Graham, R. C., & Wells, S. G. (2005). Surface control of desert pavement pedologic process and landscape function, Cima Volcanic field, Mojave Desert, California. CATENA, 59, 205–230.

    Article  Google Scholar 

  • Zhang, Z., & Sun, J. (2011). Palynological evidence for Neogene environmental change in the foreland basin of the southern Tianshan range, northwestern China. Global and Planetary Change, 75, 56–66.

    Article  Google Scholar 

  • Zheng, H., Tada, R., Jia, J., Lawrence, C., & Wang, K. (2010). Cenozoic sediments in the southern Tarim Basin: Implications for the uplift of northern Tibet and evolution of the Taklimakan Desert. Geological Society of London Special Publication, 342, 67–78.

    Article  Google Scholar 

  • Zhuang, G., Hourigan, J. K., Koch, P. L., Ritts, B. D., & Kent-Corson, M. L. (2011). Isotopic constraints on intensified aridity in Central Asia around 12 Ma. Earth and Planetary Science Letters, 312, 152–163.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goudie, A. (2019). A Half Century of Developments in Desert Geomorphology and the Place of A. T. Grove. In: Martin, M., Damodaran, V., D'Souza, R. (eds) Geography in Britain after World War II. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-030-28323-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28323-0_3

  • Published:

  • Publisher Name: Palgrave Macmillan, Cham

  • Print ISBN: 978-3-030-28322-3

  • Online ISBN: 978-3-030-28323-0

  • eBook Packages: HistoryHistory (R0)

Publish with us

Policies and ethics