Skip to main content

Abstract

Data collected over a geographical space may exhibit some sort of dependence in the sense that closer observations are more alike than those far apart. Such behavior is modeled by including a covariance structure into the classical statistical models. In particular, spatial regression models which accommodate various types of spatial dependencies have been increasingly applied in epidemiology, geology, disease surveillance, urban planning, analysis and mapping of poverty indicators and others. An important type of spatial regression models is the Spatial Moving Average (SMA, which imposes a moving average specification on the noise term, as is the case in temporal time series regressions. In this paper we consider the SMA models and propose efficient estimators of their regression coefficients by using shrinkage and penalty approaches. We provide analytical and numerical analysis to illustrate the superiority of the proposed estimators over the classical MLE estimators. Additionally, we apply the new methodology to the Baltimore housing sale prices data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Huang, J.S.: The autoregressive moving average model for spatial analysis. Aust. J. Stat. 26(2), 169–178 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Mur, J.: Testing for spatial autocorrelation: Moving average versus autoregresive processes. Environ. Plan. A. 31(8), 1371–1382 (1999)

    Article  Google Scholar 

  3. Anselin, L., Florax, R.: Small sample properties of tests for spatial dependence in regression models: some further results. New Dir. Spat. Econ. 1995, 21–74 (1995)

    MATH  Google Scholar 

  4. Anselin, L.: Spatial Econometrics: Methods and Models. Kluwer Academic, The Netherlands (1988)

    Book  MATH  Google Scholar 

  5. Bailey, T.C., Gatrell, A.C.: Interactive Spatial Data Analysis. Longman Scientific & Technical Essex, London (1995)

    Google Scholar 

  6. Cliff, A.D., Ord, J.K.: Spatial Processes: Models and Applications. Pion Ltd, London (1981)

    MATH  Google Scholar 

  7. Noel, C., Wikle, C.K.: Statistics for Spatio-Temporal Data. Wiley, New Jersey (2011)

    MATH  Google Scholar 

  8. Bancroft, T.A.: On biases in estimation due to the use of preliminary tests of significance. Ann. Math. Stat. 15, 190–204 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  9. Stein, C.: Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, pp. 197–206. University of California Press., Berkeley and Los Angeles (1956)

    Google Scholar 

  10. Stein, C.: An approach to the recovery of inter-block information in balanced incomplete block designs. In: Research Papers in Statistics, pp. 351–366. Wiley, London (1966)

    Google Scholar 

  11. Ahmed, S.E.: Improved \(R\)-estimation of regression coefficients. J. Stat. Res. 31(1), 53–73 (1997)

    MathSciNet  Google Scholar 

  12. Ahmed, S.E.: Improved pretest nonparametric estimation in a multivariate regression model. Commun. Stat.-Theory Methods 27(10), 2391–2421 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Khan, B.U., Ahmed, S.E.: Improved estimation of coefficient vector in a regression model. Commun. Stat.-Simul. Comput. 32(3), 747–769 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ahmed, S.E., Hussein, A.A., Sen, P.K.: Risk comparison of some shrinkage M-estimators in linear models. J. Nonparametric Stat. 18(4–6), 401–415 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ahmed, S.E., Hussein, A.A., Al-Momani, M.: Efficient estimation for the conditional autoregressive model. J. Stat. Comput. Simul. 85(13), 2569–2581 (2015)

    Article  MathSciNet  Google Scholar 

  16. Nkurunziza, S., Al-Momani, M., Lin, Y.: Shrinkage and LASSO strategies in high-dimensional heteroscedastic models. Commun. Stat.-Theory Methods 45(15), 4454–4470 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dawod Abdaljb, B.A., Al-Momani, M., Abbasi, S.A.: On efficient estimation strategies in monitoring of linear profiles. Int. J. Adv. Manuf. Technol. 96(9), 3977–3991 (2018)

    Article  Google Scholar 

  18. Al-Momani, M., Hussein, A.A., Ahmed, S.E.: Penalty and related estimation strategies in the spatial error model. Stat. Neerl. 71(1), 4–30 (2017)

    Article  MathSciNet  Google Scholar 

  19. Ahmed, S.E.: Asymptotic shrinkage estimation: the regression case. Applied statistical science, II (Malang, 1996) 1997, 113–143 (1997)

    MathSciNet  MATH  Google Scholar 

  20. Ahmed, S.E.: Shrinkage estimation of regression coefficients from censored data with multiple observations. Empirical Bayes and likelihood inference (Montreal, QC 1997). Lecture Notes in Statist., pp. 103–120. Springer, New York (2001)

    Chapter  Google Scholar 

  21. Saleh, A.K.: Theory of Preliminary Test and Stein-type Estimation with Applications. Wiley, Hoboken, NJ (2006)

    Book  MATH  Google Scholar 

  22. Ahmed, S.E., Doksum, K.A., Hossain, S., You, J.: Shrinkage, pretest and absolute penalty estimators in partially linear models. Aust. N. Z. J. Statistics. 49(4), 435–454 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nkurunziza, S., Ahmed, S.E.: Estimation strategies for the regression coefficient parameter matrix in multivariate multiple regression. Statistica Neerlandica 65(4), 387–406 (2011)

    Article  MathSciNet  Google Scholar 

  24. Raheem, S.M.E., Ahmed, S.E., Doksum, K.A.: Absolute penalty and shrinkage estimation in partially linear models. Comput. Stat. Data Anal. 56(4), 874–891 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Al-Momani, M.: Shrinkage and penalty estimation for some spatial regression models. Ph.D. thesis, University of Windsor, Canada (2013)

    Google Scholar 

  26. Ahmed, S.E.: Penalty, Shrinkage and Pretest Strategies. Springer, New York (2014)

    Book  MATH  Google Scholar 

  27. Ahmed, S.E., Raheem, S.M.E.: Shrinkage and absolute penalty estimation in linear regression models. Wiley Interdiscip. Rev.: Comput. Stat. 4(6), 541–553 (2012). Wiley

    Article  Google Scholar 

  28. Hossain, S., Doksum, K.A., Ahmed, S.E.: Positive shrinkage, improved pretest and absolute penalty estimators in partially linear models. Linear Algebra Appl. 430(10), 2749–2761 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hossain, S., Ahmed, S.E.: Shrinkage and penalty estimators of a poisson regression model. Aust. N. Z. J. Statistics. 54(3), 359–373 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hussein, A.A., Nkurunziza, S., Tomanelli, K.: Nonparametric Shrinkage estimation for Aalen’s additive hazards model. Aust. N. Z. J. Stat. (2013)

    Google Scholar 

  31. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann. Stat. 32(2), 407–499 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  33. Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96(456), 1348–1360 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hannes, L., Benedikt, M.P.: Sparse estimators and the oracle property, or the return of Hodges’ estimator. J. Econom. 142(1), 201–211 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Dubin, R.A.: Spatial autocorrelation and neighborhood quality. Reg.Nal Sci. Urban Econom. 22(3), 433–452 (1992)

    Article  Google Scholar 

  36. Zou, H.: The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 101(476), 1418–1429 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwan Al-Momani .

Editor information

Editors and Affiliations

Appendix

Appendix

Proof of Theorem 2:

  1. (i)

    From Theorem 1, we have:

    $$\begin{aligned} \sqrt{n} (\hat{\varvec{\beta }}-\varvec{\beta })=\sqrt{n} \left( \left( \begin{array}{cc}\hat{\varvec{\beta }}_1 \\ \hat{\varvec{\beta }}_2 \end{array}\right) - \left( \begin{array}{cc}\varvec{\beta }_1 \\ \varvec{\beta }_2 \end{array} \right) \right) \overset{D}{\longrightarrow }N_p\left( \left( \begin{array}{cc}\varvec{0}_{p_1} \\ \varvec{0}_{p_2}\end{array}\right) ,\sigma ^2\varvec{V}^{-1}\right) , \end{aligned}$$

    where \(\varvec{V}^{-1}\) as in  (18). Therefore,

    $$\begin{aligned} \varvec{T}^{(1)}_n= \sqrt{n}(\hat{\varvec{\beta }}_1-\varvec{\beta }_1)\overset{D}{\longrightarrow }\varvec{T}^{(1)}\sim N_{p_1}(\varvec{0}_{p_1},\sigma ^2\varvec{D}), \end{aligned}$$

    where \(\varvec{D}=\varvec{V}_{11.2}^{-1}\).

  2. (ii)

    Note that

    $$\begin{aligned} \hat{\varvec{\beta }}^R_1= & {} \hat{\varvec{\beta }}_1+(\varvec{X}_{01}^\prime {\varvec{\hat{V}}_{\varvec{n}}^{-1}} \varvec{X}_{01})^{-1}(\varvec{X}_{01}^\prime {\varvec{\hat{V}}_{\varvec{n}}^{-1}} \varvec{X}_{02})\hat{\varvec{\beta }}_2, \text { so}\\ \varvec{T}^{(2)}_n= & {} \sqrt{n} \Big \{\hat{\varvec{\beta }}_1+(\varvec{X}_{01}^\prime {\varvec{\hat{V}}_{\varvec{n}}^{-1}} \varvec{X}_{01})^{-1}(\varvec{X}_{01}^\prime {\varvec{\hat{V}}_{\varvec{n}}^{-1}} \varvec{X}_{02})\hat{\varvec{\beta }}_2-\varvec{\beta }_1\Big \}\\= & {} \varvec{T}^{(1)}_n+(\varvec{X}_{01}^\prime {\varvec{\hat{V}}_{\varvec{n}}^{-1}} \varvec{X}_{01})^{-1}(\varvec{X}_{01}^\prime {\varvec{\hat{V}}_{\varvec{n}}^{-1}} \varvec{X}_{02})\sqrt{n} (\hat{\varvec{\beta }}_2-\varvec{\beta }_2)\\+ & {} (\varvec{X}_{01}^\prime {\varvec{\hat{V}}_{\varvec{n}}^{-1}} \varvec{X}_{01})^{-1}(\varvec{X}_{01}^\prime {\varvec{\hat{V}}_{\varvec{n}}^{-1}} \varvec{X}_{02})\sqrt{n} \varvec{\beta }_2. \end{aligned}$$

    As \(n\longrightarrow \infty \), and by Slutsky’s theorem, we have: \(\varvec{T}^{(2)}_n\overset{D}{\longrightarrow }\varvec{T}^{(2)}\sim N_{p_1}(\varvec{\mu }^{(2)},\varvec{\Sigma }^{(2)})\), where

    $$\begin{aligned} \varvec{\mu }^{(2)}= & {} \varvec{V}_{11}^{-1}\varvec{V}_{12}\varvec{\xi }= \varvec{\pi }\\ \varvec{\Sigma }^{(2)}= & {} Var\Big \{\varvec{T}^{(1)}+\varvec{V}_{11}^{-1}\varvec{V}_{12}\varvec{T}^{(12)}\Big \}\\= & {} Var(\varvec{T}^{(1)})+Var(\varvec{V}_{11}^{-1}\varvec{V}_{12}\varvec{T}^{(12)})+Cov(\varvec{T}^{(1)},\varvec{V}_{11}^{-1}\varvec{V}_{12}\varvec{T}^{(12)})\\+ & {} Cov(\varvec{V}_{11}^{-1}\varvec{V}_{12}\varvec{T}^{(12)},\varvec{T}^{(1)})\\= & {} \sigma ^2\Big \{\varvec{V}_{11.2}^{-1}-\varvec{V}_{11}^{-1}\varvec{V}_{12}\varvec{V}_{22}^{-1}\varvec{V}_{21}\varvec{V}_{11.2}^{-1} \Big \}\\= & {} \sigma ^2\Big \{\varvec{D}-\varvec{D}^*\Big \}. \end{aligned}$$
  3. (iii)

    Also note that:

    $$\begin{aligned} \varvec{T}^{(3)}_n= & {} \sqrt{n}(\hat{\varvec{\beta }}_1-\hat{\varvec{\beta }}^R_1)\\= & {} \sqrt{n}\left( - (\varvec{X}_{01}^\prime {\varvec{\hat{V}}_{\varvec{n}}^{-1}} \varvec{X}_{01})^{-1}(\varvec{X}_{01}^\prime {\varvec{\hat{V}}_{\varvec{n}}^{-1}} \varvec{X}_{02})\hat{\varvec{\beta }}_2\right) \\= & {} -\sqrt{n}\left( (\varvec{X}_{01}^\prime {\varvec{\hat{V}}_{\varvec{n}}^{-1}} \varvec{X}_{01})^{-1}(\varvec{X}_{01}^\prime {\varvec{\hat{V}}_{\varvec{n}}^{-1}} \varvec{X}_{02})(\hat{\varvec{\beta }}_2-\varvec{\beta }_2+\varvec{\beta }_2) \right) \\= & {} -(\varvec{X}_{01}^\prime {\varvec{\hat{V}}_{\varvec{n}}^{-1}} \varvec{X}_{01})^{-1}(\varvec{X}_{01}^\prime {\varvec{\hat{V}}_{\varvec{n}}^{-1}} \varvec{X}_{02})\sqrt{n}(\hat{\varvec{\beta }}_2-\varvec{\beta }_2)\\- & {} (\varvec{X}_{01}^\prime {\varvec{\hat{V}}_{\varvec{n}}^{-1}} \varvec{X}_{01})^{-1}(\varvec{X}_{01}^\prime {\varvec{\hat{V}}_{\varvec{n}}^{-1}} \varvec{X}_{02})\sqrt{n}\varvec{\beta }_2. \end{aligned}$$

    As \(n\longrightarrow \infty \) and using Slutsky’s theorem, we have: \(\varvec{T}^{(3)}_n\overset{D}{\longrightarrow }\varvec{T}^{(3)}\sim N_{p_1}\left( \varvec{\mu }^{(3)},\varvec{\Sigma }^{(3)}\right) \), where

    $$\begin{aligned} \varvec{\mu }^{(3)}= & {} \varvec{0} -\varvec{V}_{11}^{-1}\varvec{V}_{12}\varvec{\xi }= -\varvec{\pi }\\ \varvec{\Sigma }^{(3)}= & {} Var(-\varvec{V}_{11}^{-1}\varvec{V}_{12}\varvec{T}^{(12)})\\= & {} \sigma ^2\varvec{V}_{11}^{-1}\varvec{V}_{12}\varvec{V}_{22.1}^{-1}\varvec{V}_{21}\varvec{V}_{11}^{-1}\\= & {} \sigma ^2\varvec{D}^*. \end{aligned}$$
  4. (iv)

    Note that:

    $$\begin{aligned} \varvec{T}^{(2)}_n= & {} \sqrt{n}(\hat{\varvec{\beta }}^R_1-\varvec{\beta }_1)\\= & {} \sqrt{n} \left( \hat{\varvec{\beta }}_1+(\varvec{X}_{01}^\prime {\varvec{\hat{V}}_{\varvec{n}}^{-1}} \varvec{X}_{01})^{-1}(\varvec{X}_{01}^\prime {\varvec{\hat{V}}_{\varvec{n}}^{-1}} \varvec{X}_{02})\hat{\varvec{\beta }}_2 -\varvec{\beta }_1 \right) \\= & {} \sqrt{n}\Big ((\hat{\varvec{\beta }}_1-\varvec{\beta }_1)+(\varvec{X}_{01}^\prime {\varvec{\hat{V}}_{\varvec{n}}^{-1}} \varvec{X}_{01})^{-1}(\varvec{X}_{01}^\prime {\varvec{\hat{V}}_{\varvec{n}}^{-1}} \varvec{X}_{02})(\hat{\varvec{\beta }}_2-\varvec{\beta }_2\\+ & {} \varvec{\beta }_2) \Big )\\= & {} \varvec{T}^{(1)}_n+(\varvec{X}_{01}^\prime {\varvec{\hat{V}}_{\varvec{n}}^{-1}} \varvec{X}_{01})^{-1}(\varvec{X}_{01}^\prime {\varvec{\hat{V}}_{\varvec{n}}^{-1}} \varvec{X}_{02})\sqrt{n}(\hat{\varvec{\beta }}_2-\varvec{\beta }_2)\\+ & {} (\varvec{X}_{01}^\prime {\varvec{\hat{V}}_{\varvec{n}}^{-1}} \varvec{X}_{01})^{-1}(\varvec{X}_{01}^\prime {\varvec{\hat{V}}_{\varvec{n}}^{-1}} \varvec{X}_{02})\sqrt{n}\varvec{\beta }_2\\= & {} \varvec{T}^{(1)}_n+\varvec{A}_n \varvec{T}^{(12)}_n+\varvec{A}_n \varvec{\xi }, \end{aligned}$$

    where \(\varvec{A}_n=(\varvec{X}_{01}^\prime {\varvec{\hat{V}}_{\varvec{n}}^{-1}} \varvec{X}_{01})^{-1}(\varvec{X}_{01}^\prime {\varvec{\hat{V}}_{\varvec{n}}^{-1}} \varvec{X}_{02})\), and

    $$\begin{aligned} \varvec{T}^{(3)}_n= & {} \sqrt{n}(\hat{\varvec{\beta }}_1-\hat{\varvec{\beta }}^R_1)\\= & {} \sqrt{n}\left( -(\varvec{X}_{01}^\prime {\varvec{\hat{V}}_{\varvec{n}}^{-1}} \varvec{X}_{01})^{-1}(\varvec{X}_{01}^\prime {\varvec{\hat{V}}_{\varvec{n}}^{-1}} \varvec{X}_{02})(\hat{\varvec{\beta }}_2-\varvec{\beta }_2+\varvec{\beta }_2) \right) \\= & {} -(\varvec{X}_{01}^\prime {\varvec{\hat{V}}_{\varvec{n}}^{-1}} \varvec{X}_{01})^{-1}(\varvec{X}_{01}^\prime {\varvec{\hat{V}}_{\varvec{n}}^{-1}} \varvec{X}_{02})\sqrt{n}(\hat{\varvec{\beta }}_2-\varvec{\beta }_2)\\- & {} (\varvec{X}_{01}^\prime {\varvec{\hat{V}}_{\varvec{n}}^{-1}} \varvec{X}_{01})^{-1}(\varvec{X}_{01}^\prime {\varvec{\hat{V}}_{\varvec{n}}^{-1}} \varvec{X}_{02})\sqrt{n}\varvec{\beta }_2\\= & {} -\varvec{A}_n\varvec{T}^{(12)}_n-\varvec{A}_n\varvec{\xi }. \end{aligned}$$

    Therefore,

    $$\begin{aligned} \left( \begin{array}{cc} \varvec{T}^{(2)}_n\\ \varvec{T}^{(3)}_n\end{array}\right)= & {} \left( \begin{array}{cc}\varvec{I}_{p_1}\\ \varvec{0}_{p_1}\end{array}\right) \varvec{T}^{(1)}_n+ \left( \begin{array}{cc}\varvec{A}_n\\ -\varvec{A}_n\end{array}\right) \varvec{T}^{(12)}_n+\left( \begin{array}{cc}\varvec{A}_n \\ -\varvec{A}_n\end{array}\right) \varvec{\xi }\\= & {} \varvec{G}_1\varvec{T}^{(1)}_n+ \varvec{G}_{2n}\varvec{T}^{(12)}_n+\varvec{G}_{2n}\varvec{\xi }, \end{aligned}$$

    which is a linear combination of \(\varvec{T}^{(1)}_n\) and \(\varvec{T}^{(12)}_n\), where \(\varvec{G}_1 = \left( \begin{array}{cc}\varvec{I}_{p1}\\ \varvec{0}_{p_1}\end{array}\right) \), \(\varvec{G}_{2n}=\left( \begin{array}{cc}\varvec{A}_n\\ -\varvec{A}_n\end{array}\right) \), \(\varvec{I}_{p_1}\) is a \(p_1\times p_1\) idintity matrix, and \(\varvec{0}_{p_1}\) is a \(p_1\times p_1\) matrix of zeros. Thus, as \(n\longrightarrow \infty \) and by Slutsky’s theorem, we have: \(\varvec{A}_n\overset{P}{\longrightarrow }\varvec{A} = \varvec{V}_{11}^{-1} \varvec{V}_{12}\), \(\varvec{G}_{2n} \overset{P}{\longrightarrow }\varvec{G}_2 = \left( \begin{array}{cc} \varvec{A} \\ -\varvec{A} \end{array}\right) \). So, \(\left( \begin{array}{cc}\varvec{T}^{(2)}_n\\ \varvec{T}^{(3)}_n\end{array}\right) \overset{D}{\longrightarrow }\left( \begin{array}{cc}\varvec{T}^{(2)}\\ \varvec{T}^{(3)}\end{array}\right) \sim N_{2p_1}\left( \varvec{\mu }^{(4)},\varvec{\Sigma }^{(4)}\right) \), where

    $$\begin{aligned} \varvec{\mu }^{(4)}= & {} \varvec{G}_1+\varvec{G}_2 \varvec{0} +\varvec{G}_2 \varvec{\xi }\\= & {} \left( \begin{array}{cc}\varvec{V}_{11}^{-1}\varvec{V}_{12}\varvec{\xi }\\ -\varvec{V}_{11}\varvec{V}_{12}\varvec{\xi }\end{array}\right) =\left( \begin{array}{cc}\varvec{\pi }\\ -\varvec{\pi }\end{array}\right) ,\\ \varvec{\Sigma }^{(4)}= & {} Var(\varvec{G}_1 \varvec{T}^{(1)})+Var(\varvec{G}_2 \varvec{T}^{(12)})+Cov(\varvec{G}_1 \varvec{T}^{(1)}, \varvec{G}_2\varvec{T}^{(12)})\\+ & {} Cov(\varvec{G}_2 \varvec{T}^{(12)}, \varvec{G}_1 \varvec{T}^{(1)}),\\= & {} \sigma ^2\left( \begin{array}{cc} \varvec{D}-\varvec{D}^* &{} \varvec{0} \\ \varvec{0} &{} \varvec{D}^* \end{array}\right) , \end{aligned}$$

    using the properties of the variance and covariance functions. It is clear that \(\varvec{T}^{(2)}_n\) and \(\varvec{T}^{(3)}_n\) are asymptotically independent.

  5. (v)

    Using the same technique as in part (iv), we can write \(\left( \begin{array}{cc} \varvec{T}^{(1)}_n\\ \varvec{T}^{(3)}_n\end{array}\right) \) as a linear combination of \(\varvec{T}^{(1)}_n\) and \(\varvec{T}^{(12)}_n\) as below:

    $$\begin{aligned} \left( \begin{array}{cc} \varvec{T}^{(1)}_n\\ \varvec{T}^{(3)}_n\end{array}\right)= & {} \left( \begin{array}{cc} \varvec{I}_{p_1} \\ \varvec{0}_{p_1}\end{array}\right) \varvec{T}^{(1)}_n+ \left( \begin{array}{cc} \varvec{0}_{p_1\times p_2} \\ -\varvec{A}_n\end{array}\right) \varvec{T}^{(12)}_n+\left( \begin{array}{cc} \varvec{0}_{p_1\times p_2} \\ -\varvec{A}_n\end{array}\right) \varvec{\xi }\\= & {} \varvec{G}_1\varvec{T}^{(1)}_n+\varvec{F}_n\varvec{T}^{(12)}_n+\varvec{F}_n\varvec{\xi }, \end{aligned}$$

    where \(\varvec{F}_n =\left( \begin{array}{cc} \varvec{0}_{p_1\times p_2} \\ -\varvec{A}_n \end{array}\right) \), and \(\varvec{0}_{p_1\times p_2}\) is a \(p_1\times p_2\) matrix of zeros. Therefore, as \(n\longrightarrow \infty \) and by Slutsky’s theorem, we have: \(\varvec{F}_n\overset{P}{\longrightarrow }\varvec{F}=\left( \begin{array}{cc} \varvec{0} \\ -\varvec{A}\end{array}\right) \), and hence \(\left( \begin{array}{cc} \varvec{T}^{(1)}_n\\ \varvec{T}^{(3)}_n\end{array}\right) \overset{D}{\longrightarrow }\left( \begin{array}{cc} \varvec{T}^{(1)}\\ \varvec{T}^{(3)}\end{array}\right) \sim N_{2p_1} \left( \varvec{\mu }^{(5)},\varvec{\Sigma }^{(5)}\right) \), where

    $$\begin{aligned} \varvec{\mu }^{(5)}= & {} \varvec{G}_1\varvec{0} +\varvec{F}\varvec{0} +\left( \begin{array}{cc}\varvec{0} \\ -\varvec{A} \end{array}\right) \varvec{\xi }= \left( \begin{array}{cc}\varvec{0} \\ -\varvec{A} \varvec{\xi }\end{array}\right) =\left( \begin{array}{cc}\varvec{0} \\ -\varvec{\pi }\end{array}\right) ,\\ \varvec{\Sigma }^{(5)}= & {} Var(G_1\varvec{T}^{(1)})+Var(\varvec{F} \varvec{T}^{(12)})+Cov(\varvec{G}_1\varvec{T}^{(1)},\varvec{F}\varvec{T}^{(12)})\\+ & {} Cov(\varvec{F} \varvec{T}^{(12)},\varvec{G}_1\varvec{T}^{(1)})\\= & {} \sigma ^2\left( \begin{array}{cc} \varvec{D}&{} \varvec{D}^*\\ \varvec{D}^* &{} \varvec{D}^* \end{array}\right) , \end{aligned}$$

    using the same procedure as in part (iv).

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Al-Momani, M., Ejaz Ahmed, S., Hussein, A.A. (2020). Efficient Estimation Strategies for Spatial Moving Average Model. In: Xu, J., Ahmed, S., Cooke, F., Duca, G. (eds) Proceedings of the Thirteenth International Conference on Management Science and Engineering Management. ICMSEM 2019. Advances in Intelligent Systems and Computing, vol 1001. Springer, Cham. https://doi.org/10.1007/978-3-030-21248-3_38

Download citation

Publish with us

Policies and ethics