Skip to main content

Fermat’s Last Theorem

  • Living reference work entry
  • First Online:
Handbook of the History and Philosophy of Mathematical Practice
  • 272 Accesses

Abstract

For 300 years, Fermat’s Last Theorem seemed to be pure arithmetic little connected even to other problems in arithmetic. But the last decades of the twentieth century saw the discovery of very special cubic curves, and the rise of the huge theoretical Langlands Program. The Langlands perspective showed those curves are so special they cannot exist, and thus proved Fermat’s Last Theorem. With many great contributors, the proof ended in a deep and widely applicable geometric result relating nice curves in rational coordinates to very nice surfaces in complex coordinates. This geometry is the only proof strategy for FLT yet known. Outstanding but not atypical of current mathematics, the proof challenges common philosophic views on abstraction and structure and raises still-open logical questions in arithmetic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Artin M, Grothendieck A, Verdier JL (1972) Theorie des Topos et Cohomologie Etale des Schémas. Séminaire de géométrie algébrique du Bois-Marie, 4. Springer, three volumes, cited as SGA 4, New York

    Google Scholar 

  • Avigad J (2003) Number theory and elementary arithmetic. Philos Math 11:257–284

    Article  MathSciNet  Google Scholar 

  • Avigad J (2006) Methodology and metaphysics in the development of Dedekind’s theory of ideals. In: Gray J, Ferreirós J (eds) The architecture of modern mathematics: essays in history and philosophy. Oxford University Press, Oxford UK, pp 159–186

    Google Scholar 

  • Benacerraf P (1965) What numbers could not be. Philos Rev 74:47–73

    Article  MathSciNet  Google Scholar 

  • Bhargava M, Shankar A (2015) Binary quartic forms having bounded invariants, and the bounded-ness of the average rank of elliptic curves. Ann Math 181:191–242

    Article  MathSciNet  Google Scholar 

  • Boniface J (2016) A process of generalization: Kummers creation of ideal numbers. In: Chemla K, Chorlay R, Rabouin D (eds) The Oxford handbook of generality in mathematics and the sciences. Oxford University Press, Oxford, UK, pp 483–500

    Google Scholar 

  • Cassels JWS (1973) Louis Joel Mordell. 1888–1972. Biograph Memoirs Fellows R Soc 19:493–520

    Article  Google Scholar 

  • Cox D (1989) Primes of the form x2 + ny2. Wiley Interscience, New York

    Google Scholar 

  • D’Alessandro W (2020) Proving quadratic reciprocity: explanation, disagreement, transparency and depth. Synthese:1–44. https://springerlink.bibliotecabuap.elogim.com/article/10.1007/s11229-020-02591-6

  • Darmon H, Diamond F, Taylor R (1997) Fermat’s last theorem. In: Coates J, Yau ST (eds) Elliptic curves, modular forms & Fermat’s last theorem. International Press, Somerville, pp 2–140. Reprinted in several books and available on several websites

    Google Scholar 

  • Demyanenko V (1971) The points of finite order of elliptic curves. Acta Arith 19:185–194

    Article  MathSciNet  Google Scholar 

  • Edwards H (1977) Fermat’s last theorem: a genetic introduction to algebraic number theory. Springer, New York

    Book  Google Scholar 

  • Faltings G (1983) Endlichkeitssatze für abelsche Varietäten über Zahlkörpern. Invent Math 73:349–366

    Article  MathSciNet  Google Scholar 

  • Frenkel E (2013) Love and math: the heart of hidden reality. Basic Books, New York

    Google Scholar 

  • Frey G (1982) Rationale Punkte auf Fermatkurven und getwisteten Modulkurven. J für die reine und angewandte Mathematik 331:185–191

    MathSciNet  MATH  Google Scholar 

  • Frey G (1986) Links between stable elliptic curves and certain Diophantine equations. No. 1 in Annales Universitatis Saraviensis. Series Mathematicae. Saarlande University, Saarbrücken

    Google Scholar 

  • Gelbart S (1997) Three lectures on the modularity of \( {\overline{\rho}}_{\mathrm{e},3} \) and the Langlands reciprocity conjecture. In: Cornell G, Silverman J, Stevens G (eds) Modular forms and Fermat’s last theorem. Springer, New York, pp 155–191

    Google Scholar 

  • Grothendieck A (1971) Revêtements Étales et Groupe Fondamental. Séminaire de géométrie algébrique du Bois-Marie, 1, Springer, New York, generally cited as SGA 1

    Google Scholar 

  • Hájek P, Pudlák P (1993) Metamathematics of first order arithmetic. Springer, Berlin

    Google Scholar 

  • Heath-Brown R (1984) Fermat’s last theorem for “almost all” exponents. Bull Lond Math Soc 17(1):15–16

    Article  MathSciNet  Google Scholar 

  • Hellegouarch Y (1971) Points d’ordre fini sur les courbes elliptiques. CRAS Paris 273:54–43

    MathSciNet  MATH  Google Scholar 

  • Hellegouarch Y (2000) Rectificatif àl’article de H. Darmon. Gazette des Mathématiciens 83, found at https://nitaj.users.lmno.cnrs.fr/hellegouarch.html

  • Hilbert D, Hurwitz A (1890) Über die diophantischen Gleichungen vom Geschlecht Null. Acta Math 14:217–224

    Article  MathSciNet  Google Scholar 

  • Kato K, Kurokawa N, Saito T (2011) Number theory 2: introduction to class field theory. American Mathematical Society, Providence

    Book  Google Scholar 

  • Kronecker L (1882) Grundzüge einer arithmetischen theorie der algebraischen grössen. Crelle. J für die reine und angewandte Mathematik XCII:1–122

    MATH  Google Scholar 

  • Macintyre A (2011) The impact of Gödel’s incompleteness theorems on mathematics. In: Kurt Gödel and the foundations of mathematics: horizons of truth. Cambridge University Press, pp 3–25. Proceedings of Gödel Centenary, Vienna, Cambridge UK, 2006

    Google Scholar 

  • Mathias ARD (2001) The strength of Mac Lane set theory. Ann Pure Appl Logic 110:107–234

    Article  MathSciNet  Google Scholar 

  • Mazur B (1977a) Modular curves and the Eisenstein ideal. Publ Math IHES 47:133–186

    Article  Google Scholar 

  • Mazur B (1977b) Review of Ernst Edward Kummer, collected papers. Bull Am Math Soc 83:976–988

    Article  MathSciNet  Google Scholar 

  • Mazur B (1978) Rational isogenies of prime degree. Invent Math 44:129–162

    Article  MathSciNet  Google Scholar 

  • Mazur B (1987) On some of the mathematical contributions of Gerd Faltings. In: Gleason A (ed) Proceedings of the international congress of mathematicians, Berkeley, 1986, vol 1. American Mathematical Society, pp 7–12

    Google Scholar 

  • Mazur B (1991) Number theory as gadfly. Am Math Mon 98:593–610

    Article  MathSciNet  Google Scholar 

  • Mazur B (1997) Introduction to the deformation theory of Galois representations. In: Cornell G, Silverman J, Stevens S (eds) Modular forms and Fermat’s last theorem. Springer, pp 243–312

    Chapter  Google Scholar 

  • McKean H, Moll V (1999) Elliptic curves: function theory, geometry, arithmetic. Cambridge University Press, Cambridge UK

    Google Scholar 

  • McLarty C (2010) What does it take to prove Fermat’s last theorem? Bull Symb Log 16:359–377

    Article  Google Scholar 

  • McLarty C (2020) The large structures of Grothendieck founded on finite order arithmetic. Rev Symb Log 13(2):296–325

    Article  MathSciNet  Google Scholar 

  • Miranda R (1995) Algebraic Curves and Riemann Surfaces. American Mathemtical Society, Providence

    Book  Google Scholar 

  • Mueller J (2018) On the genesis of Robert P Langlands conjectures and his letter to André Weil. Bull Am Math Soc 55:493–528

    Article  Google Scholar 

  • Poincaré H (1901) Sur les propriétés arithmétiques des courbes algébriques. J des Mathematiques 7:161–233

    MATH  Google Scholar 

  • Pont JC (1974) Latopologie algébrique des origines à Poincaré. Presses Universitaires de France, Paris

    MATH  Google Scholar 

  • Reid M (2013) Undergraduate algebraic geometry. Cambridge University Press, Cambridge, UK

    MATH  Google Scholar 

  • Ribet K (1990) On modular representations of \( \mathrm{Gal}\left(\overline{\mathbf{Q}}/\mathbf{Q}\right) \) arising from modular forms. Invent Math 100(2):431–476

    Article  MathSciNet  Google Scholar 

  • Riemann B (1851) Grundlagen für eine allgemeine theorie der functionen einer veränderlichen complexen grösse. Inauguraldissertation, Universität Göttingen. In: Dedekind R, Weber H (eds) BernhardRiemann’s Gesammelte mathematische Werke, vol 1876. B.G. Teubner, Leipzig, pp 3–45

    Google Scholar 

  • Saito T (2013) Fermat’s last theorem: basic tools. American Mathematical Society, Providence

    Book  Google Scholar 

  • Schappacher N (1993/1994) Les 350 ans du “Grand Theoreme de Fermat”. L’Ouvert 73 and 75:1–9 and 32–44

    Google Scholar 

  • Schappacher N, Schoof R (1996) Beppo Levi and the arithmetic of elliptic curves. Math Intell 18:57–69

    Article  MathSciNet  Google Scholar 

  • Serre JP (1971) p-torsion des courbes elliptiques, exposé 380. In: Séminaire Bourbaki. Secrétariat mathématique, Université Paris, Paris

    Google Scholar 

  • Stewart I, Tall D (2001) Algebraic number theory and Fermat’s last theorem. A. K. Peters Ltd, Natick, Massachusetts

    Google Scholar 

  • Stillwell J (1995) Elliptic curves. Am Math Mon 102(9):831–836

    Article  MathSciNet  Google Scholar 

  • Tappenden J (2008) Mathematical concepts and definitions. In: Mancosu P (ed) The philosophy of mathematical practice. Oxford University Press, Oxford UK, pp 256–275

    Google Scholar 

  • Weil A (1928) L’arithmétique sur les courbes algébriques. Acta Math 52:1–35

    MathSciNet  Google Scholar 

  • Weil A (1987) Number theory: an approach through history from Hammurapi to Legendre, Birkhäuser, New York

    Google Scholar 

  • Weil A (1991) Souvenirs d’apprentissage. Birkhauser, New York

    Google Scholar 

  • Wiles A (1995a) Modular elliptic curves and Fermat’s last theorem. Ann Math 141:443–551

    Article  MathSciNet  Google Scholar 

  • Wiles A (1995b) Modular forms, elliptic curves, and Fermat’s last theorem. In: Proceedings of the International Congress of Mathematicians Zurich 1994, vol 1. Birkhauser, Zürich, pp 243–245

    Chapter  Google Scholar 

  • Yap A (2011) Gauss’ quadratic reciprocity theorem and mathematical fruitfulness. Stud Hist Phil Sci 42(3):410–415

    Article  MathSciNet  Google Scholar 

  • Yap A (2020) Noether as mathematical structuralist. In: Reck EH, Schiemer G (eds) Prehistory of mathematical structuralism. Oxford University Press, Oxford UK, pp 166–186

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin McLarty .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

McLarty, C. (2021). Fermat’s Last Theorem. In: Sriraman, B. (eds) Handbook of the History and Philosophy of Mathematical Practice. Springer, Cham. https://doi.org/10.1007/978-3-030-19071-2_44-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19071-2_44-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19071-2

  • Online ISBN: 978-3-030-19071-2

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics