Skip to main content

Mechanisms in Clinical Research and Medical Practice

  • Chapter
Mario Bunge: A Centenary Festschrift
  • 396 Accesses

Abstract

Mario Bunge’s medical philosophy emphasizes the importance of mechanismic models in guiding the design, analysis, and practical application of clinical research. By contrast, the Evidence-Based Medicine (EBM) movement regards mechanismic hypotheses as “evidence” dissociable from, and of secondary importance to, the findings of experimental research. In agreement with Bunge, it is argued here that mechanismic models and mechanismic thinking play essential roles in both clinical research and practice. Mechanismic models in medicine view health and disease as emergent processes occurring in complex biological systems and draw upon established scientific knowledge from multiple disciplines to help identify and control parameters that have decisive effects on clinical outcomes. Models play an essential role in designing efficient and reliable population-based studies, and in detecting and correcting for random error and systematic bias in clinical research. They are important both for extrapolating the results of clinical research to novel contexts and for tailoring interventions to the specific circumstances of an individual case. Contrary to the subordinate status they are accorded by EBM, empirically-validated mechanismic models should constitute the foundation of a scientific approach to medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Angrist, J. D., & Pischke, J. S. (2009). Mostly harmless econometrics: An Empiricist’s companion. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Aström, K. J., & Murray, R. M. (2008). Feedback systems: An introduction for scientists and engineers. Princeton: Princeton University Press.

    Google Scholar 

  • Bareinboim, E., & Pearl, J. (2016). Causal inference and the data-fusion problem. Proceedings of the National Academy of Sciences USA, 113(27), 7345–7352.

    Article  Google Scholar 

  • Bunge, M. (2004). How does it work?: The search for explanatory mechanisms. Philosophy of the Social Sciences, 34(2), 182–210.

    Article  Google Scholar 

  • Bunge, M. (2013). Medical philosophy: Conceptual issues in medicine. Hackensack: World Scientific Publishing Company.

    Book  Google Scholar 

  • Bunge, M. (2017). Philosophy of science. Volume 2: From explanation to justification. New York: Routledge.

    Book  Google Scholar 

  • Bunge, M., & Mahner, M. (2001). Scientific realism: Selected essays of Mario Bunge. Amherst: Prometheus Books.

    Google Scholar 

  • Cartwright, N., & Deaton, A. (2017). Understanding and misunderstanding randomized controlled trials. Social Science and Medicine. https://doi.org/10.1016/j.socscimed.2017.12.005.

    Article  Google Scholar 

  • Davey Smith, G., & Hemani, G. (2014). Mendelian randomization: Genetic anchors for causal inference in epidemiological studies. Human Molecular Genetics, 23(R1), R89–R98. https://doi.org/10.1093/hmg/ddu328.

    Article  Google Scholar 

  • Dwan, K., Altman, D. G., Arnaiz, J. A., Bloom, J., Chan, A. W., Cronin, E., Decullier, E., Easterbrook, P. J., Von Elm, E., Gamble, C., Ghersi, D., Ioannidis, J. P., Simes, J., & Williamson, P. R. (2008). Systematic review of the empirical evidence of study publication bias and outcome reporting bias. Public Library of Science One, 3(8), e3081. https://doi.org/10.1371/journal.pone.0003081.

    Article  Google Scholar 

  • Eddy, D. M. (2005). Evidence-based medicine: A unified approach. Health Affairs (Millwood), 24(1), 9–17.

    Article  Google Scholar 

  • Greenhalgh, T., Howick, J., Maskrey, N., & Evidence-Based Medicine Renaissance Group. (2014). Evidence based medicine: A movement in crisis. British Medical Journal, 348, g3725. https://doi.org/10.1136/bmj.g3725.

    Article  Google Scholar 

  • Howick, J., Glasziou, P., & Aronson, J. K. (2010). Evidence-based mechanistic reasoning. Journal of the Royal Society of Medicine, 103(11), 433–441.

    Article  Google Scholar 

  • Imai, K., King, G., & Stuart, E. (2008). Misunderstandings among experimentalists and observationalists about causal inference. Journal of the Royal Statistical Society, Series A, 171(Part 2), 481–502.

    Article  Google Scholar 

  • Ioannidis, J. P. (2005). Why most published research findings are false. Public Library of Science Medicine, 2(8), e124. https://doi.org/10.1371/journal.pmed.0020124.

    Article  Google Scholar 

  • Ioannidis, J. P., Stuart, M. E., Brownlee, S., & Strite, S. A. (2017). How to survive the medical misinformation mess. European Journal of Clinical Investigation, 47(11), 795–802.

    Article  Google Scholar 

  • Kent, D. M., & Hayward, R. A. (2007). Limitations of applying summary results of clinical trials to individual patients: The need for risk stratification. Journal of the American Medical Association, 298(10), 1209–1212.

    Article  Google Scholar 

  • King, G., Nielsen, R., Coberley, C., Pope, J. E., & Wells, A. (2011). Avoiding randomization failure in program evaluation, with application to the Medicare Health Support program. Population Health Management, 14(Suppl 1), S11–S22. https://doi.org/10.1089/pop.2010.0074.

    Article  Google Scholar 

  • Lenzer, J., Hoffman, J. R., Furberg, C. D., Ioannidis, J. P., & Guideline Panel Review Working Group. (2013). Ensuring the integrity of clinical practice guidelines: A tool for protecting patients. British Medical Journal, 347, f5535. https://doi.org/10.1136/bmj.f5535.

    Article  Google Scholar 

  • Machta, B. B., Ricky Chachra, R., Mark, K., Transtrum, M. K., & Sethna, J. P. (2013). Parameter space compression underlies emergent theories and predictive models. Science, 342(6158), 604–607.

    Article  Google Scholar 

  • Murad, M. H., Montori, V. M., Ioannidis, J. P., Jaeschke, R., Devereaux, P. J., Prasad, K., Neumann, I., Carrasco-Labra, A., Agoritsas, T., Hatala, R., Meade, M. O., Wyer, P., Cook, D. J., & Guyatt, G. (2014). How to read a systematic review and meta-analysis and apply the results to patient care: Users’ guides to the medical literature. Journal of the American Medical Association, 312(2), 171–179.

    Article  Google Scholar 

  • Pearl, J. (2009). Causality: Models, reasoning and inference. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Pearl, J., Glymour, M., & Jewell, N. P. (2016). Causal inference in statistics: A primer. New York: Wiley.

    Google Scholar 

  • Snowden, T. J., van der Graaf, P. H., & Tindall, M. J. (2017). Methods of model reduction for large-scale biological systems: A survey of current methods and trends. Bulletin of Mathematical Biology, 79(7), 1449–1486.

    Article  Google Scholar 

  • Transtrum, M. K., & Qiu, P. (2016). Bridging mechanistic and phenomenological models of complex biological systems. Public Library of Science Computational Biology, 12(5), e1004915. https://doi.org/10.1371/journal.pcbi.1004915.

    Article  Google Scholar 

  • Varadhan, R., Segal, J. B., Boyd, C. M., Wu, A. W., & Weiss, C. O. (2013). A framework for the analysis of heterogeneity of treatment effect in patient-centered outcomes research. Journal of Clinical Epidemiology, 66(8), 818–825.

    Article  Google Scholar 

  • White, A., Tolman, M., Thames, H. D., Withers, H. R., Mason, K. A., & Transtrum, M. K. (2016). The limitations of model-based experimental design and parameter estimation in sloppy systems. Public Library of Science Computational Biology, 12, e1005227. https://doi.org/10.1371/journal.pcbi.1005227.

    Article  Google Scholar 

  • Wright, S. (1921). Correlation and causation. Journal of Agricultural Research, 20, 557–585.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Ahmad, O. (2019). Mechanisms in Clinical Research and Medical Practice. In: Matthews, M.R. (eds) Mario Bunge: A Centenary Festschrift. Springer, Cham. https://doi.org/10.1007/978-3-030-16673-1_39

Download citation

Publish with us

Policies and ethics