Skip to main content

Introduction: Philosophers Look at Quantum Mechanics

  • Chapter
  • First Online:
Philosophers Look at Quantum Mechanics

Part of the book series: Synthese Library ((SYLI,volume 406))

  • 531 Accesses

Abstract

This chapterprovides background to the topics covered in the volume and gives a rough mapping of the papers included. Section 1.1 is on Bell’s Theorem and the debate on realism. Section 1.2 considers non-realist responses to the puzzles of quantum mechanics (QM). Section 1.3 outlines the character of realist projects today. Section 1.4 looks at ongoing ontological explorations of the quantum state. Section 1.5 concentrates on fine-grain realist approaches to the nature of the quantum state. Section 1.6 is on individuals and individualization. Section 1.7 discusses a current revival of interest in Niels Bohr’s insights on QM. Section 1.8 outlines some contemporary calls to reconceptualize QM. Section 1.9 ends the chapter with some personal suggestions regarding the scope and limits of realist interpretation.

Dedicated to Hilary Putnam.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Schrödinger imagined a set-up in which a boxed cat is gassed to death if a particle decays, left alone if the particle does not decay. But the particle is neither decaying nor not-decaying, instead it is in a peculiar quantum state: a “superposition” of both decaying and not decaying. According to the Schrödinger equation, the cat evolves into a superposition of being both dead and alive.

  2. 2.

    Classic presentations include textbooks like Lenard Schiff (1949, multiply reedited and still available) and Albert Messiah (1961, multiply reedited, also still available).

  3. 3.

    A more radical variety challenges the existence of any external reality—an option without takers among the contributors to this volume.

  4. 4.

    See, in particular, Worrall (1989), Kitcher (1993), Leplin (1997), Psillos (1999).

  5. 5.

    See, e.g., Ghirardi et al. (1986, 1990), and Tumulka (2006).

  6. 6.

    See, e.g., Ghirardi, Grassi and Pearle (1990), and Tumulka (2006).

References

  • Albert, D. Z. (1996). Elementary quantum metaphysics. In J. Cushing, A. Fine, & S. Goldstein (Eds.), Bohmian mechanics and quantum theory: an appraisal (Boston Studies in the Philosophy of Science, 184) (pp. 277–284). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Albert, D. Z. (2003). Time and chance. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Aspect, A. (2002). The naive view of an experimentalist. In R. A. Bertlmann & A. Zeilinger (Eds.), Quantum [Un]speakables – From Bell to quantum information (pp. 119–153). Berlin: Springer.

    Chapter  Google Scholar 

  • Bell, J. S. (1964). On the Einstein-Podolsky-Rosen paradox. Physics, 1, 195–200.

    Article  Google Scholar 

  • Bell, J. S. (1973). Subject and object. In J. Mehra (Ed.), The physicist’s conception of nature (pp. 687–690). Dordrecht: Reidel. (Reprinted in Speakable and unspeakable in quantum mechanics. Cambridge University Press, 1987.).

    Chapter  Google Scholar 

  • Bohr, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physical Review, 48, 696–702.

    Article  Google Scholar 

  • Bub, J., & Pitowski, I. (2010). Two dogmas about quantum mechanics. In S. Saunders, J. Barrett, A. Kent, & D. Wallace (Eds.), Many worlds? Everett, quantum theory, and reality (pp. 431–456). Oxford: Oxford University Press.

    Google Scholar 

  • Cordero, A. (2001). Realism and Underdetermination: Some clues from the practices-up. Philosophy of Science, 68S, S301–S312.

    Article  Google Scholar 

  • Cordero, A. (2017). Retention, truth-content and selective realism. In E. Agazzi (Ed.), Scientific realism: The problem of objectivity and truth in science (pp. 245–256). Cham: Springer Nature.

    Chapter  Google Scholar 

  • Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47, 777–780.

    Article  Google Scholar 

  • Everett, H., III. (1957). ‘Relative state’ formulation of quantum mechanics. Reviews of Modern Physics, 29, 454–462.

    Article  Google Scholar 

  • Van Fraassen, B. C. (1980). The scientific image. Oxford: Oxford University Press.

    Book  Google Scholar 

  • French, S., & Krause, D. (2006). Identity in physics: A historical, philosophical, and formal analysis. Oxford: Clarendon Press.

    Book  Google Scholar 

  • Gell-Mann, M., & Hartle, J. B. (1993). Classical equations for quantum systems. Physical Reviews D, 47, 3345–3382.

    Article  Google Scholar 

  • Ghirardi, G. C., Rimini, A., & Weber, T. (1986). Unified dynamics for microscopic and macroscopic systems. Physical Review D, 34, 440–491.

    Article  Google Scholar 

  • Ghirardi, G. C., Grassi, R., & Pearle, P. (1990). Relativistic dynamic reduction models—General framework and examples. Foundations of Physics, 20, 1271.

    Article  Google Scholar 

  • Kitcher, P. (1993). The advancement of science. Oxford: Oxford University Press.

    Google Scholar 

  • Kochen, S., & Specker, E. P. (1967). The problem of hidden variables in quantum mechanics. Journal of Mathematics and Mechanics, 17, 59–87.

    Google Scholar 

  • Leplin, J. (1997). A novel defense of scientific realism. New York: Oxford University Press.

    Google Scholar 

  • Lewis, P. (2016). Quantum ontology: A guide to the metaphysics of quantum mechanics. New York: Oxford University Press.

    Book  Google Scholar 

  • Masgrau, L., Roujeinikova, A., Johannissen, L. O., Hothi, P., Basran, J., Ranaghan, K. E., Mulholland, A. J., Sutcliffe, M. J., et al. (2006). Atomic description of an enzyme reaction dominated by proton tunneling. Science, 312(5771), 237–241.

    Article  Google Scholar 

  • Messiah, A. (1961/2014). Quantum mechanics. Mineola. NY: Dover Publications.

    Google Scholar 

  • Ney, A. (2013). Ontological reduction and the wave function ontology. In D. Z. Albert & A. Ney (Eds.), The wave function: Essays on the metaphysics of quantum mechanics (pp. 168–183). New York: Oxford University Press.

    Chapter  Google Scholar 

  • Psillos, S. (1999). Scientific realism. London: Routledge.

    Google Scholar 

  • Putnam, H. (1965). A philosopher looks at quantum mechanics. In Robert G, Colodny (Ed.). Beyond the edge of certainty: Essays in contemporary science and philosophy. Englewood Cliffs. Reproduced in: Hilary Putnam: Mathematics, Matter, and Method. Philosophical Papers, Vol. I. Cambridge (Vol. 1975, pp. 130–158).

    Google Scholar 

  • Saatsi, J. (2015). Replacing recipe realism. Synthese, 194(9), 3233–3244.

    Article  Google Scholar 

  • Saatsi, J. (2016). What is theoretical progress of science. Synthese, 196(2), 611–631. https://doi.org/10.1007/s11229-016-1118-9.

    Article  Google Scholar 

  • Schiff, L. I. (1949). Quantum mechanics. New York: McGraw-Hill Book Co.

    Google Scholar 

  • Simonov, K., & Hiesmayr, B. C. (2016). Spontaneous collapse: A solution to the measurement problem and a source of the decay in mesonic systems. Physical Review A, 94(052128), 1–20.

    Google Scholar 

  • Timpson, C. G. (2008). Quantum Bayesianism: A Study. Studies in History and Philosophy of Modern Physics, 39(3), 579–609. https://doi.org/10.1016/j.shpsb.2008.03.006.

    Article  Google Scholar 

  • Tumulka, R. (2006). A relativistic version of the Ghirardi–Rimini–Weber model. Journal of Statistical Physics, 125, 821–840.

    Article  Google Scholar 

  • Valentini, A. (1991) Signal locality, uncertainty, and the subquantum H-Theorem. Part I in Physics Letters A 156, 5–11. Part II in Physics Letters A 158, 1–8.

    Google Scholar 

  • Van Fraassen, B. C. (1991). Quantum mechanics: An empiricist view. Oxford: Clarendon Press.

    Book  Google Scholar 

  • Wallace, D. (2012). The emergent multiverse: Quantum theory according to the Everett interpretation. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Worrall, J. (1989). Structural realism: The best of both worlds? Dialectica, 43, 99–124.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cordero, A. (2019). Introduction: Philosophers Look at Quantum Mechanics. In: Cordero, A. (eds) Philosophers Look at Quantum Mechanics. Synthese Library, vol 406. Springer, Cham. https://doi.org/10.1007/978-3-030-15659-6_1

Download citation

Publish with us

Policies and ethics