Skip to main content

Vehicular Network Systems in Smart Cities

  • Living reference work entry
  • First Online:
Handbook of Smart Cities

Abstract

The need for connectivity in motion has gained interest in vehicular network systems due to the services they can provide in the transformation of transport through the Internet of Things (IoT) application for a smart city. The evolution of wireless network technology, protocols, and standards in a vehicular network aims to transform transport toward a more intelligent transport that meets the needs of users. Thus, the implementation of a vehicular network, through smart vehicles and road infrastructure, allows vehicles or mobile nodes to communicate with each other to send information that provides society with numerous services ranging from decreased traffic to the user’s security. Therefore the wireless network in motion applied in the transport is unprecedented. Innovative applications focused on improving lifestyles through smart transportation are highlighted in this chapter. Besides, diverse literature in the area of wireless networks is presented to improve connectivity between moving vehicles and the development of future intelligent transport systems (ITS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Alavi, A. H., Jiao, P., Buttlar, W. G., & Lajnef, N. (2018). Internet of things-enabled smart cities: State-of-the-art and future trends. Measurement, 129, 589–606. https://doi.org/10.1016/j.measurement.2018.07.067.

    Article  Google Scholar 

  • Aljeri, N., & Boukerche, A. (2020). A dynamic MAP discovery and selection scheme for predictive hierarchical MIPv6 in vehicular networks. IEEE Transactions on Vehicular Technology, 69(1), 793–806. https://doi.org/10.1109/TVT.2019.2942691.

    Article  Google Scholar 

  • Al-Mallah, R., Quintero, A., & Farooq, B. (2017). Distributed classification of urban congestion using VANET. IEEE Transactions on Intelligent Transportation Systems, 18(9), 2435–2442. https://doi.org/10.1109/TITS.2016.2641903.

    Article  Google Scholar 

  • Almeida-Oliveira, H. T., & Godoy, E. P. (2016). ZigBee wireless dynamic sensor networks: Feasibility analysis and implementation guide. IEEE Sensors Journal, 16, 4614–4621. https://doi.org/10.1109/JSEN.2016.2542063.

    Article  Google Scholar 

  • Arora, A., Mehra, A., & Mishra, K. K. (2019). Vehicle to Vehicle (V2V) VANET based analysis on waiting time and performance in LTE network. In 3rd international conference on trends in electronics and informatics (ICOEI) (pp. 482–489), Tirunelveli. https://doi.org/10.1109/ICOEI.2019.8862776.

  • Asghari, M., Yousefi, S., & Niyato, D. (2019). Pricing strategies of IoT wide area network service providers with complementary services included. Journal of Network and Computer Applications, 147. https://doi.org/10.1016/j.jnca.2019.102426.

  • Bagula, A., Castelli, L., & Zennaro, M. (2015). On the Design of Smart Parking Networks in the smart cities: An optimal sensor placement model. Sensors, 15, 15443–15467.

    Article  Google Scholar 

  • Baraa, T., Sharef, R. A., & Alsaqour, M. I. (2014). Vehicular communication ad hoc routing protocols: A survey. Journal of Network and Computer Applications, 40, 363–396. https://doi.org/10.1016/j.jnca.2013.09.008.

    Article  Google Scholar 

  • Bellaouar, S., Guerroumi, M., Derhab, A., & Moussaoui, S. (2018). Towards heterogeneous architectures of hybrid vehicular sensor networks for smart cities. In Z. Mahmood (Ed.), Smart cities. Computer communications and networks. Cham: Springer.

    Google Scholar 

  • Bernsen, J., & Manivannan, D. (2009). Unicast routing protocols for vehicular ad hoc networks: A critical comparison and classification. Pervasive and Mobile Computing, 5(1), 1–18. https://doi.org/10.1016/j.pmcj.2008.09.001.

    Article  Google Scholar 

  • Bibri, S., & Krogstie, J. (2017). Smart sustainable cities of the future: An extensive interdisciplinary literature review. Sustainable Cities and Society, 31, 183–212. https://doi.org/10.1016/j.scs.2017.02.016.

    Article  Google Scholar 

  • Bock, F., Di Martino, S., & Origlia, A. (2020). Smart parking: Using a crowd of Taxis to sense on-street parking space availability. IEEE Transactions on Intelligent Transportation Systems, 21(2), 496–508. https://doi.org/10.1109/TITS.2019.2899149.

    Article  Google Scholar 

  • Boussoufa-Lahlah, S., Semchedine, F., & Bouallouche-Medjkoune, L. (2018). Geographic routing protocols for Vehicular Ad hoc NETworks (VANETs): A survey. Vehicular Communications, 11, 20–31. https://doi.org/10.1016/j.vehcom.2018.01.006.

    Article  Google Scholar 

  • Braga-Reis, A., Sargento, S., & Tonguz, O. K. (2018). Smarter cities with parked cars as roadside units. IEEE Transactions on Intelligent Transportation Systems, 19(7), 2338–2352.

    Article  Google Scholar 

  • Bugarcic, P. D., Malnar, M. Z., & Jevtic, N. J. (2019). Modifications of AODV protocol for VANETs: performance analysis in NS-3 simulator. In 27th Telecommunications Forum (TELFOR) (pp. 1–4). Belgrade. https://doi.org/10.1109/TELFOR48224.2019.8971283.

  • Cao, S., & Lee, V. C. S. (2018). A novel adaptive TDMA-based MAC protocol for VANETs. IEEE Communications Letters, 22(3), 614–617. https://doi.org/10.1109/LCOMM.2017.2785378.

    Article  Google Scholar 

  • Carignani, M., Ferrini, S., Petracca, M., Falcitelli, M., Pagano, P. (2015). A prototype bridge between automotive and the IoT. In IEEE 2nd world forum on Internet of Things (WF-IoT) (pp. 12–17). Milan. https://doi.org/10.1109/WF-IoT.2015.7389019.

  • Chen, S., Hu, J., Shi, Y., & Zhao, L. (2016). LTE-V: A TD-LTE-based V2X solution for future vehicular network. IEEE Internet of Things Journal, 3(6), 997–1005. https://doi.org/10.1109/JIOT.2016.2611605.

    Article  Google Scholar 

  • Chowdhary, N., & Deep, K. P. (2016). Addressing the characteristics of mobility models in IoV for smart city. In International conference on computing, communication and automation (ICCCA) (pp. 1298–1303). Noida.

    Google Scholar 

  • Contreras-Castillo, J., Zeadally, S., & Guerrero-Ibañez, J. A. (2016). Solving vehicular ad hoc network challenges with big data solutions. IET Networks, 5(4), 81–84. https://doi.org/10.1049/iet-net.2016.0001.

    Article  Google Scholar 

  • Cooper, C., Franklin, D., Ros, M., Safaei, F., & Abolhasan, M. (2017). A comparative survey of VANET clustering techniques. IEEE Communications Surveys & Tutorials, 19(1), 657–681. https://doi.org/10.1109/COMST.2016.2611524.

    Article  Google Scholar 

  • Croce, D., Garlisi, D., Giuliano, F., Valvo, A. L., Mangione, S., & Tinnirello, I. (2019). Performance of LoRa for bike-sharing systems. In AEIT international conference of electrical and electronic technologies for automotive (AEIT AUTOMOTIVE) (pp. 1–6). Torino. https://doi.org/10.23919/EETA.2019.8804519.

  • Devangavi, A. D., & Gupta, R. (2017). Routing protocols in VANET – A survey. In International conference on smart technologies for smart nation (SmartTechCon) (pp. 163–167). Bangalore. https://doi.org/10.1109/SmartTechCon.2017.8358362.

  • Du, R., Santi, P., Xiao, M., Vasilakos, A. V., & Fischione, C. (2019). The sensable city: A survey on the deployment and management for smart city monitoring. IEEE Communications Surveys & Tutorials, 21(2), 1533–1560.

    Article  Google Scholar 

  • Farkas, K., Feher, G., Benczur, A., & Sidlo, C. (2015). Crowdsending based public transport information service in smart cities. IEEE Communications Magazine, 53(8), 158–165. https://doi.org/10.1109/MCOM.2015.7180523.

    Article  Google Scholar 

  • Fernandez, P., Jara, A. J., & Skarmeta, A. F. G. (2013). Evaluation framework for IEEE 802.15.4 and IEEE 802.11 for smart cities. In Seventh international conference on innovative mobile and internet services in ubiquitous computing (pp. 421–426). Taichung.

    Google Scholar 

  • Gaikwad, D. S., & Zaveri, M. (2011). VANET routing protocols and mobility models: A survey. In D. C. Wyld, M. Wozniak, N. Chaki, N. Meghanathan, & D. Nagamalai (Eds.), Trends in network and communications. WeST 2011, NeCoM 2011, WiMoN 2011. Communications in computer and information science (Vol. 197). Berlin: Springer.

    Google Scholar 

  • Galaviz-Mosqueda, A., Morales-Sandoval, M., Villarreal-Reyes, S., Galeana-Zapién, H., Rivera-Rodríguez, R., & AlonsoArévalo, M. Á. (2017). Multi-hop broadcast message dissemination in vehicular ad hoc networks: A security perspective review. International Journal of Distributed Sensor Networks. https://doi.org/10.1177/1550147717741263.

  • Gasiorowski-Denis, E., Lazarte, M., & Tranchard, S. (2016). ISO focus_118. Geneva: International Organization for Standardization.

    Google Scholar 

  • Ghaleb, B., Al-Dubai, A., Ekonomou, E., Wadhaj, I. (2017). A new enhanced RPL based routing for Internet of Things. In IEEE international conference on communications workshops (ICC workshops) (pp. 595–600). Paris.

    Google Scholar 

  • Ghazi, M. U., Khan-Khattak, M. A., Shabir, B., Malik, A. W., & Sher-Ramzan, M. (2020). Emergency message dissemination in vehicular networks: A review. IEEE Access, 8, 38606–38621. https://doi.org/10.1109/ACCESS.2020.2975110.

    Article  Google Scholar 

  • Golestan, K., et al. (2012). Vehicular ad-hoc networks(VANETs): Capabilities, challenges in information gathering and data fusion. In M. Kamel, F. Karray, & H. Hagras (Eds.), Autonomous and intelligent systems. AIS 2012. Lecture notes in computer science (Vol. 7326, pp. 34–41). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Hainalkar, G. N. & Vanjale, M. S. (2017). Smart parking system with pre & post reservation, billing and traffic app. In International conference on intelligent computing and control systems (ICICCS) (pp. 500–505). Madurai. https://doi.org/10.1109/ICCONS.2017.8250772.

  • Hasrouny, H., Ellatif, S. A., Bassil, C., & Laouiti, A. (2017). VANet security challenges and solutions: A survey. Vehicular Communications, 7, 7–20. https://doi.org/10.1016/j.vehcom.2017.01.002.

    Article  Google Scholar 

  • Hassan, A. M., & Awad, A. I. (2018). Urban transition in the era of the internet of things: Social implications and privacy challenges. IEEE Access, 6, 36428–36440.

    Article  Google Scholar 

  • He, Z., & Zhang, D. (2017). Cost-efficient traffic-aware data collection protocol in VANET. Ad Hoc Networks, 55, 28–39. https://doi.org/10.1016/j.adhoc.2016.09.021.

    Article  Google Scholar 

  • Hebbar, S., Pattar, P., & Golla, V. (2016). A mobile ZigBee module in a traffic control system. IEEE Potentials, 35, 19–23. https://doi.org/10.1109/MPOT.2014.2341331.

    Article  Google Scholar 

  • Huang, H., Savkin, A. V., Ding, M., & Huang, C. (2019). Mobile robots in wireless sensor networks: A survey on tasks. Computer Networks, 148, 1–19. https://doi.org/10.1016/j.comnet.2018.10.018.

    Article  Google Scholar 

  • Hussain, R., Rezaeifar, Z., & Oh, H. (2015). A paradigm shift from vehicular ad hoc networks to VANET-based clouds. Wireless Personal Communication, 83, 1131–1158.

    Article  Google Scholar 

  • Hwang, J., An, J., Aziz, A., Kim, J., Jeong, S., & Song, J. (2019). Interworking models of Smart City with heterogeneous internet of things standards. IEEE Communications Magazine, 57(6), 74–79.

    Article  Google Scholar 

  • Ibrahim, M., El-Zaart, A., & Adams, C. (2018). Smart sustainable cities roadmap: Readiness for transformation towards urban sustainability. Sustainable Cities and Society, 37, 530–540. https://doi.org/10.1016/j.scs.2017.10.008.

    Article  Google Scholar 

  • Iova, O., Picco, P., Istomin, T., & Kiraly, C. (2016). RPL: The routing standard for the internet of things... Or is it? IEEE Communications Magazine, 54(12), 16–22.

    Article  Google Scholar 

  • Islam, M. J., Khatun, A., Mahin, M., & Islam, N. (2019). Evaluating the effect of transmission range (TX) on the performance of DSDV, AODV and DSR in Vehicular Ad hoc Network (VANET) traffic scenarios. In International conference on computer, communication, chemical, materials and electronic engineering (IC4ME2) (pp. 1–4). Rajshahi. https://doi.org/10.1109/IC4ME247184.2019.9036548.

  • Jain, B., Brar, G., Malhotra, J., & Rani, S. (2017). A novel approach for smart cities in convergence to wireless sensor networks. Sustainable Cities and Society, 35, 440–448. https://doi.org/10.1016/j.scs.2017.08.005.

    Article  Google Scholar 

  • Kaiwartya, O., et al. (2016). Internet of vehicles: Motivation, layered architecture, network model, challenges, and future aspects. IEEE Access, 4, 5356–5373.

    Article  Google Scholar 

  • Karagiannis, G., et al. (2011). Vehicular networking: A survey and tutorial on requirements, architectures, challenges, standards and solutions. IEEE Communications Surveys & Tutorials, 13(4), 584–616.

    Article  Google Scholar 

  • Kaur, M. A., Batra, S., & Singh, P. H. (2020). Security of vehicular ad-hoc networks: A comprehensive survey. Computers & Security, 89. https://doi.org/10.1016/j.cose.2019.101664.

  • Khanafer, M., Kandil, M., Al-Baghdadi, R., Al-Ajmi, A., & Mouftah, H. T. (2019). Enhancements to IEEE 802.15.4 MAC protocol to support vehicle-to-roadside communications in VANETs. In ICC 2019 – 2019 IEEE international conference on communications (ICC) (pp. 1–5). Shanghai. https://doi.org/10.1109/ICC.2019.8761245.

  • Kirimtat, A., Krejcar, O., Kertesz, A., & Tasgetiren, M. F. (2020). Future trends and current state of smart city concepts: A survey. IEEE Access, 8, 86448–86467. https://doi.org/10.1109/ACCESS.2020.2992441.

    Article  Google Scholar 

  • Kumar, H., Kumar, S. M., Gupta, M. P., & Madaan, J. (2018). Moving towards smart cities: Solutions that lead to the smart city transformation framework. Technological Forecasting and Social Change. https://doi.org/10.1016/j.techfore.2018.04.024.

  • Li, Y., Han, S., Yang, L., Wang, F., & Zhang, H. (2018). LoRa on the move: Performance evaluation of LoRa in V2X communications. In IEEE intelligent vehicles symposium (IV) (pp. 1107–1111). Changshu. https://doi.org/10.1109/IVS.2018.8500655.

  • Li, P., Wu, X., Shen, W., Tong, W., & Guo, S. (2019). Collaboration of heterogeneous unmanned vehicles for smart cities. IEEE Network, 33(4), 133–137.

    Article  Google Scholar 

  • Lu, R., Zhang, L., Ni, J., & Fang, Y. (2020). 5G vehicle-to-everything services: Gearing up for security and privacy. Proceedings of the IEEE, 108(2), 373–389. https://doi.org/10.1109/JPROC.2019.2948302.

    Article  Google Scholar 

  • Luo, G., Li, J., Zhang, L., Yuan, Q., Liu, Z., & Yang, F. (2018). sdnMAC: A software-defined network inspired MAC protocol for cooperative safety in VANETs. IEEE Transactions on Intelligent Transportation Systems, 19(6), 2011–2024. https://doi.org/10.1109/TITS.2017.2736887.

    Article  Google Scholar 

  • Mackey, A., Spachos, P., & Plataniotis, K. N. (2020). Smart parking system based on Bluetooth low energy beacons with particle filtering. IEEE Systems Journal. https://doi.org/10.1109/JSYST.2020.2968883.

  • Matyakubov, M., & Rustamova, O. (2019). Development of smart city model: Smart bus system. In International conference on information science and communications technologies (ICISCT) (pp. 1–5). Tashkent.

    Google Scholar 

  • Mora-Mora, H., Gilart-Iglesias, V., Gil, D., & Sirvent-Llamas, A. (2015). A computational architecture based on RFID sensors for traceability in smart cities. Sensors, 15, 13591–13626.

    Article  Google Scholar 

  • Mutalik, P., & Patil, V. C. (2017). A survey on vehicular ad-hoc network [VANET’s] protocols for improving safety in urban cities. In International conference on smart technologies for smart nation (SmartTechCon) (pp. 840–845). Bangalore. https://doi.org/10.1109/SmartTechCon.2017.8358491.

  • Naim, Z., & Hossain, M. I. (2019). Performance Analysis of AODV, DSDV And DSR in Vehicular Adhoc Network (VANET). In: International conference on robotics, electrical and signal processing techniques (ICREST) (pp. 17–22). Dhaka. https://doi.org/10.1109/ICREST.2019.8644313.

  • Najada, H. A., & Mahgoub, I. (2016). Anticipation and alert system of congestion and accidents in VANET using big data analysis for intelligent transportation systems. In IEEE symposium series on computational intelligence (SSCI) (pp. 1–8). Athens. https://doi.org/10.1109/SSCI.2016.7850097.

  • Najat, B., & Salah, E. H. (2018). Comparative study of classification algorithms for big data in VANET. In International conference on advances in computing and communication engineering (ICACCE) (pp. 327–330). Paris. https://doi.org/10.1109/ICACCE.2018.8458065.

  • Nguyen, V., Khanh, T. T., Oo, T. Z., Tran, N. H., Huh, E., & Hong, C. S. (2019). A cooperative and reliable RSU-assisted IEEE 802.11P-based multi-channel MAC protocol for VANETs. IEEE Access, 7, 107576–107590. https://doi.org/10.1109/ACCESS.2019.2933241.

    Article  Google Scholar 

  • Ning, Z., Huang, J., & Wang, X. (2019). Vehicular fog computing: Enabling real-time traffic Management for Smart Cities. IEEE Wireless Communications, 26(1), 87–93. https://doi.org/10.1109/MWC.2019.1700441.

    Article  Google Scholar 

  • Noussaiba, M., & Rahal, R. (2017). State of the art: VANETs applications and their RFID-based systems. In 4th international conference on control, decision and information technologies (CoDIT) (pp. 516–520). Barcelona. https://doi.org/10.1109/CoDIT.2017.8102645.

  • Oche, M., Tambuwal, A. B., Chemebe, C., et al. (2020). VANETs QoS-based routing protocols based on multi-constrained ability to support ITS infotainment services. Wireless Networks, 26, 1685–1715. https://doi.org/10.1007/s11276-018-1860-7.

    Article  Google Scholar 

  • Pierleoni, P., et al. (2018). The Scrovegni chapel moves into the future: An innovative internet of things solution brings new light to Giotto’s masterpiece. IEEE Sensors Journal, 18(18), 7681–7696.

    Article  Google Scholar 

  • Pongle, P., & Chavan, G. (2015). A survey: Attacks on RPL and 6LoWPAN in IoT. In International conference on pervasive computing (ICPC) (pp. 1–6). Pune.

    Google Scholar 

  • Pradhan, R., Rakshit, S., & De, T. (2018). Performance evaluation of RPL under mobility for VANETs. In 5th international conference on signal processing and integrated networks (SPIN) (pp. 739–744). Noida.

    Google Scholar 

  • Prasad, N., & Priyanka, S. P. (2015). Performance of tracking public transport in heterogeneous networks. In IEEE international conference on research in computational intelligence and communication networks (ICRCICN) (pp. 357–362). Kolkata. https://doi.org/10.1109/ICRCICN.2015.7434264.

  • Rasheed, A., Gillani, S., Ajmal, S., & Qayyum, A. (2017). Vehicular ad hoc network (VANET): A survey, challenges, and applications. In A. Laouiti, A. Qayyum, & M. Mohamad Saad (Eds.), Vehicular ad-hoc networks for smart cities. Advances in intelligent systems and computing (Vol. 548). Singapore: Springer.

    Google Scholar 

  • Rashid, B., & Rehmani, M. H. (2016). Applications of wireless sensor networks for urban areas: A survey. Journal of Network and Computer Applications, 60, 192–219. https://doi.org/10.1016/j.jnca.2015.09.008.

    Article  Google Scholar 

  • Razavi, M., Hamidkhani, M., & Sadeghi, R. (2019). Smart traffic light scheduling in smart city using image and video processing. In 3rd International conference on Internet of Things and applications (IoT) (pp. 1–4). Isfahan. https://doi.org/10.1109/IICITA.2019.8808836.

  • Remya, V. K., & Singh, T. (2015). A heterogeneous wireless network integrating smartphones, WLANs and VANET to enhance on-road surveillance and security. In 4th international conference on reliability, infocom technologies and optimization (ICRITO) (Trends and future directions) (pp. 1–6). Noida. https://doi.org/10.1109/ICRITO.2015.7359291.

  • Rhodes, C., & Djahel, S. (2017). TRADER:traffic light phases aware driving for reduced traffic congestion in smart cities. In International smart cities conference (ISC2) (pp. 1–8). Wuxi. https://doi.org/10.1109/ISC2.2017.8090783.

  • Roque-Cilia, S., Tamariz-Flores, E. I., Torrealba-Meléndez, R., & Covarrubias-Rosales, D. H. (2019). Transport tracking through communication in WDSN for smart cities. Measurement, 139, 205–212. https://doi.org/10.1016/j.measurement.2019.02.085.

    Article  Google Scholar 

  • Sadio, O., Ngom, I., & Lishou, C. (2020). Controlling WiFi direct group formation for non-critical applications in C-V2X network. IEEE Access, 8, 79947–79957. https://doi.org/10.1109/ACCESS.2020.2990671.

    Article  Google Scholar 

  • Shahen-Shah, A. F. M., Ilhan, H., & Tureli, U. (2019). RECV-MAC: A novel reliable and efficient cooperative MAC protocol for VANETs. IET Communications, 13(16), 2541–2549. https://doi.org/10.1049/iet-com.2018.6171.

    Article  Google Scholar 

  • Shriram, S. S., & Krishna, N. K. (2019). Heterogeneous wireless network for IoT applications. IETE Technical Review, 36(1), 61–68. https://doi.org/10.1080/02564602.2017.1400412.

    Article  Google Scholar 

  • Shukla, R. S., Maurya, D., & Maurya, B. (2016). Data dissemination under load distribution in hybrid network for VANET. In International conference system modeling & advancement in research trends (SMART) (pp. 175–181). Moradabad. https://doi.org/10.1109/SYSMART.2016.7894513.

  • Sumra, I. A., Hasbullah, H., & Manan, J. A. (2011). VANET security research and development ecosystem. In National postgraduate conference (pp. 1–4). Kuala Lumpur.

    Google Scholar 

  • Syfullah, M., & Lim, J. M. (2017). Data broadcasting on cloud-VANET for IEEE 802.11p and LTE hybrid VANET architectures. In 3rd international conference on computational intelligence & communication technology (CICT) (pp. 1–6). Ghaziabad. https://doi.org/10.1109/CIACT.2017.7977321.

  • Taleb, M. Y., Merniz, S., & Harous, S. (2017). Congestion control techniques in VANETs: A survey. In 13th international wireless communications and mobile computing conference (IWCMC) (pp. 484–488). Valencia.

    Google Scholar 

  • Tamariz-Flores, E. I., García-Juárez, K. A., Torrealba-Meléndez, R., Muñoz-Pacheco, J. M., & León-Chávez, M. A. (2018). An iot-based urban infrastructure system for smart cities. In M. Maheswaran & E. Badidi (Eds.), Handbook of smart cities (pp. 151–173). Cham: Springer.

    Chapter  Google Scholar 

  • Tian, B., et al. (2013). Application of modified RPL under VANET-WSN communication architecture. In International conference on computational and information sciences (pp. 1467–1470). Shiyang.

    Google Scholar 

  • Tianjiao, Z., & Qi, Z. (2017). Game-based TDMA MAC protocol for vehicular network. Journal of Communications and Networks, 19(3), 209–217. https://doi.org/10.1109/JCN.2017.000038.

    Article  Google Scholar 

  • Torre-Bastida, A. I., Del Ser, J., Laña, I., Ilardia, M., Bilbao, M. N., & Campos-Cordobés, S. (2018). Big data for transportation and mobility: Recent advances, trends and challenges. IET Intelligent Transport Systems, 12(8), 742–755. https://doi.org/10.1049/iet-its.2018.5188.

    Article  Google Scholar 

  • Urquiza-Aguiar, L., Tripp-Barba, C., & Romero-Muir, A. (2016). Mitigation of packet duplication in VANET unicast protocols. Ad Hoc Networks, 52, 63–77. https://doi.org/10.1016/j.adhoc.2016.07.012.

    Article  Google Scholar 

  • Vidyasagaran, S., Devi, S. R., Varma, A., Rajesh, A., & Charan, H. (2017). A low cost IoT based crowd management system for public transport. In International conference on inventive computing and informatics (ICICI) (pp. 222–225). Coimbatore. https://doi.org/10.1109/ICICI.2017.8365342.

  • Virágg, L., Kovács, J., & Edelmayer, A. (2013). Extension of the ITS station architecture to low-power pervasive sensor networks. In 27th international conference on advanced information networking and applications workshops (pp. 1386–1391). Barcelona.

    Google Scholar 

  • Vladimirov, S. S., Karavaev, D. A., Stepanov, A. B., Yurchenko, M. A., & Vladyko, A. G. (2019). An application of LoRa technology for SD-IoV network. In 11th international congress on ultra modern telecommunications and control systems and workshops (ICUMT) (pp. 1–4). Dublin. https://doi.org/10.1109/ICUMT48472.2019.8970938.

  • Wafa, B. J. O., Conti, M., Mosbah, M., & Palazzi, C. E. (2016). The impact of malicious nodes positioning on vehicular alert messaging system. Ad Hoc Networks, 52, 3–16. https://doi.org/10.1016/j.adhoc.2016.08.008.

    Article  Google Scholar 

  • Wang, X. (2016). A mobility frame for 6LoWPAN WSN. IEEE Sensors Journal, 16(8), 2755–2762.

    Article  Google Scholar 

  • Wang, S., Huang, A., & Zhang, T. (2013). Performance evaluation of IEEE 802.15.4 for V2V communication in VANET. In International conference on computational and information sciences (pp. 1603–1606). Shiyang. https://doi.org/10.1109/ICCIS.2013.420.

  • Wang, J., Jiang, C., Zhang, K., Quek, T. Q. S., Ren, Y., & Hanzo, L. (2018). Vehicular sensing networks in a smart city: Principles, technologies and applications. IEEE Wireless Communications, 25(1), 122–132.

    Article  Google Scholar 

  • Wang, Y., Shi, J., Chen, L., Lu, B., & Yang, Q. (2019). A novel capture-aware TDMA-based MAC protocol for safety messages broadcast in vehicular ad hoc networks. IEEE Access, 7, 116542–116554. https://doi.org/10.1109/ACCESS.2019.2936144.

    Article  Google Scholar 

  • Wu, H., et al. (2019). The implementation of wireless industrial Internet of Things (IIoT) based upon IEEE 802.15.4–2015 TSCH access mode. In IEEE international conference on dependable, autonomic and secure computing, International conference on pervasive intelligence and computing, International conference on cloud and big data computing, International conference on cyber science and technology congress (DASC/PiCom/CBDCom/CyberSciTech) (pp. 367–369). Fukuoka.

    Google Scholar 

  • Xie, Y., Ho, I. W., & Magsino, E. R. (2018). The Modeling and cross-layer optimization of 802.11p VANET unicast. IEEE Access, 6, 171–186.

    Article  Google Scholar 

  • Xiong, W., Hu, X., & Jiang, T. (2016). Measurement and characterization of link quality for IEEE 802.15.4-compliant wireless sensor networks in vehicular communications. IEEE Transactions on Industrial Informatics, 12(5), 1702–1713. https://doi.org/10.1109/TII.2015.2499121.

    Article  Google Scholar 

  • Xu, W., et al. (2018). Internet of vehicles in big data era. IEEE/CAA Journal of Automatica Sinica, 5(1), 19–35. https://doi.org/10.1109/JAS.2017.7510736.

    Article  Google Scholar 

  • Xu, Y., Chen, H., Zhang, W., & Hwang, J. (2019). Smart media transport: A burgeoning intelligent system for next generation multimedia convergence service over heterogeneous networks in China. IEEE Multimedia, 26(3), 79–91. https://doi.org/10.1109/MMUL.2019.2933684.

    Article  Google Scholar 

  • Yan, G., & Rawat, D. B. (2017). Vehicle-to-vehicle connectivity analysis for vehicular ad-hoc networks. Ad Hoc Networks, 58, 25–35. https://doi.org/10.1016/j.adhoc.2016.11.017.

    Article  Google Scholar 

  • Yan, Z., Li, H., Zeadally, S., Zeng, Y., & Geng, G. (2019). Is DNS ready for ubiquitous internet of things? IEEE Access, 7, 28835–28846.

    Article  Google Scholar 

  • Yang, Y., & Hua, K. (2019). Emerging technologies for 5G-enabled vehicular networks. IEEE Access, 7, 181117–181141. https://doi.org/10.1109/ACCESS.2019.2954466.

    Article  Google Scholar 

  • Yaqoob, I., Hashem, I. A. T., Mehmood, Y., Gani, A., Mokhtar, S., & Guizani, S. (2017). Enabling communication technologies for smart cities. IEEE Communications Magazine, 55, 112–120. https://doi.org/10.1109/MCOM.2017.1600232CM.

    Article  Google Scholar 

  • Zafari, F., Gkelias, A., & Leung, K. K. (2019). A survey of indoor localization systems and technologies. IEEE Communications Surveys & Tutorials, 21(3), 2568–2599.

    Article  Google Scholar 

  • Zhang, W., Lin, B., Gao, C., Yan, Q., Li, S., & Li, W. (2018). Optimal placement in RFID-integrated VANETs for intelligent transportation system. In IEEE international conference on RFID technology & application (RFID-TA) (pp. 1–6). Macau. https://doi.org/10.1109/RFID-TA.2018.8552765.

  • Zheng, Q., Zheng, K., Sun, L., & Leung, V. C. M. (2015). Dynamic performance analysis of uplink transmission in cluster-based heterogeneous vehicular networks. IEEE Transactions on Vehicular Technology, 64(12), 5584–5595.

    Article  Google Scholar 

  • Zhou, H., Xu, S., Ren, D., Huang, C., & Zhang, H. (2017). Analysis of event-driven warning message propagation in vehicular ad hoc networks. Ad Hoc Networks, 55, 87–96. https://doi.org/10.1016/j.adhoc.2016.09.018.

    Article  Google Scholar 

  • Zhou, M., Xu, C., Zhao, G., & Gilani, S. M. M. (2020). Personalized QoS improvement in user-centered heterogeneous V2X communication networks. In H. Gao, Z. Feng, J. Yu, & J. Wu (Eds.), Communications and networking. ChinaCom 2019. Lecture notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (p. 312). Cham: Springer.

    Google Scholar 

  • Zitouni, R., Petit, J., Djoudi, A., & George, L. (2019). IoT-based urban traffic-light control: Modelling, prototyping and evaluation of MQTT protocol. In International conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) (pp. 182–189). Atlanta. https://doi.org/10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00051.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edna Iliana Tamariz-Flores .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tamariz-Flores, E.I., Torrealba-Meléndez, R. (2020). Vehicular Network Systems in Smart Cities. In: Augusto, J.C. (eds) Handbook of Smart Cities. Springer, Cham. https://doi.org/10.1007/978-3-030-15145-4_45-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15145-4_45-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15145-4

  • Online ISBN: 978-3-030-15145-4

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics