Skip to main content

Performance Evaluation of Routing Protocols in DTNs Considering Different Mobility Models

  • Conference paper
  • First Online:
Web, Artificial Intelligence and Network Applications (WAINA 2019)

Abstract

In this paper we evaluate the performance of Epidemic, Spray and Wait routing protocols and their versions with congestion control and Epidemic with TCP in Delay Tolerant Networks. For evaluation we used three different mobility models: Random Waypoint (RWP), Steady State Random Waypoint (SSRWP) and a Tirana city map based movement. We used delivery ratio, hop count, average delay and average buffer occupancy metrics to evaluate the network performance. The network performs better for SSRWP compared to RWP and realistic Tirana map-based scenarios. The Epidemic with TCP has a high average delay because of ack packets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lakkakorpi, J., Ginzboorg, P.: ns-3 module for routing and congestion control studies in mobile opportunistic DTNs. In: Proceedings of Performance Evaluation of Computer and Telecommunication Systems (SPECTS), pp. 1–5 (2013)

    Google Scholar 

  2. Lakkakorpi, J., Pitkanen, M., Ott, J.: Using buffer space advertisements to avoid congestion in mobile opportunistic DTNs. In: Proceedings of WWIC, Barcelona, Spain, pp. 1–12, June 2011

    Google Scholar 

  3. The ns-3 Network Simulator. http://www.nsnam.org

  4. Fall, K.: A delay-tolerant network architecture for challenged Internets. In: Proceedings of the International Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, ser. SIGCOMM 2003, pp. 27–34 (2003)

    Google Scholar 

  5. Delay- and disruption-tolerant networks (DTNs) tutorial, NASA/JPL’s Interplanetary Internet (IPN) Project (2012). http://www.warthman.com/images/DTNTutorialv2.0.pdf

  6. Laoutaris, N., Smaragdakis, G., Rodriguez, P., Sundaram, R.: Delay tolerant bulk data transfers on the Internet. In: Proceedings of the 11th International Joint Conference on Measurement and Modeling of Computer Systems (SIGMETRICS 2009), pp. 229–238 (2009)

    Google Scholar 

  7. Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst, R., Scott, K., Fall, K., Weiss, H.: Delay-tolerant networking architecture. IETF RFC 4838 (Informational), April 2007

    Google Scholar 

  8. Massri, K., Vernata, A., Vitaletti, A.: Routing protocols for delay tolerant networks: a quantitative evaluation. In: Proceedings of ACM workshop PM2HW2N 2012, pp. 107–114 (2012)

    Google Scholar 

  9. Massri, K., Vitaletti, A., Vernata, A., Chatzigiannakis, I.: Routing protocols for delay tolerant networks: a reference architecture and a thorough quantitative evaluation. J. Sens. Actuator Networks, 1–28 (2016). https://doi.org/10.3390/jsan5020006

  10. Demmer, M., Fall, K.: DTLSR: delay tolerant routing for developing regions. In: Proceedings of the 2007 ACM Workshop on Networked Systems for Developing Regions, 6 p. (2007)

    Google Scholar 

  11. Ilham, A.A., Niswar, M., Agussalim: Evaluated and optimized of routing model on Delay Tolerant Network (DTN) for data transmission to remote area. In: Proceedings of FORTEI, Indonesia University Jakarta, pp. 24–28 (2012)

    Google Scholar 

  12. Uchida, N., Ishida, T., Shibata, Y.: Delay tolerant networks-based vehicle-to-vehicle wireless networks for road surveillance systems in local areas. Int. J. Space-Based Situated Comput. 6(1), 12–20 (2016)

    Article  Google Scholar 

  13. Bylykbashi, K., Spaho, E., Barolli, L., Xhafa, F.: Routing in a many-to-one communication scenario in a realistic VDTN. J. High Speed Networks 24(2), 107–118 (2018)

    Article  Google Scholar 

  14. Bylykbashi, K., Spaho, E., Barolli, L., Xhafa, F.: Impact of node density and TTL in vehicular delay tolerant networks: performance comparison of different routing protocols. Int. J. Grid Util. Comput. 7(3), 136–144 (2017)

    Google Scholar 

  15. Jain, S., Fall, K., Patra, R.: Routing in a delay tolerant network. In: Proceedings of ACM SIGCOMM 2004 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, Portland, Oregon, USA, 30 August–3 September 2004, pp. 145–158 (2004)

    Google Scholar 

  16. Zhang, Z.: Routing in intermittently connected mobile ad hoc networks and delay. IEEE Commun. Surv. Tutorials 8(1), 24–37 (2006)

    Article  Google Scholar 

  17. Soares, V.N.G.J., Rodrigues, J.J.P.C., Farahmand, F.: GeoSpray: a geographic routing protocol for vehicular delay-tolerant networks. Inf. Fusion 15(1), 102–113 (2014)

    Article  Google Scholar 

  18. Burgess, J., Gallagher, B., Jensen, D., Levine, B.N.: Maxprop: routing for vehicle-based disruption-tolerant networks. In: Proceedings of the IEEE Infocom, April 2006

    Google Scholar 

  19. Lindgren, A., Doria, A., Davies, E., Grasic, S.: Probabilistic routing protocol for intermittently connected networks. draft-irtf-dtnrg-prophet-09. http://tools.ietf.org/html/draft-irtf-dtnrg-prophet-09

  20. Vahdat, A., Becker, D.: Epidemic routing for partially connected ad hoc networks. Technical report CS-200006, Duke University, April 2000

    Google Scholar 

  21. Spyropoulos, T., Psounis, K., Raghavendra, C.S.: Spray and Wait: an efficient routing scheme for intermittently connected mobile networks. In: Proceedings of ACM SIGCOMM 2005 - Workshop on Delay Tolerant Networking and Related Networks (WDTN-05), Philadelphia, PA, USA, pp. 252–259 (2005)

    Google Scholar 

  22. Bylykbashi, K., Spaho, E., Barolli, L., Takizawa, M.: Comparison of spray and wait and epidemic protocols in different DTN scenarios. In: Proceedings of the 12th International Conference on Broad-Band Wireless Computing, Communication and Applications (BWCCA-2017), pp. 218–229 (2017)

    Google Scholar 

  23. Spaho, E., Bylykbashi, K., Barolli, L., Takizawa, L.: Routing in a DTN: performance evaluation for random waypoint and steady state random waypoint using NS3 simulator. In: Proceedings of the 12th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC-2017), pp. 133–141 (2017)

    Google Scholar 

  24. Navidi, W., Camp, T.: Stationary distributions for the random waypoint mobility model. IEEE Trans. Mob. Comput. 3(1), 99–108 (2004)

    Article  Google Scholar 

  25. Navidi, W., Camp, T., Bauer, N.: Improving the accuracy of random waypoint simulations through steady-state initialization. In: Proceedings of the 15th International Conference on Modeling and Simulation (MS 2004), pp. 319–326, March 2004

    Google Scholar 

  26. Open street map. http://www.openstreetmap.org/

  27. Simulation of urban mobility. http://sumo.sourceforge.net/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evjola Spaho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Spaho, E., Dhoska, K., Bylykbashi, K., Barolli, L., Kolici, V., Takizawa, M. (2019). Performance Evaluation of Routing Protocols in DTNs Considering Different Mobility Models. In: Barolli, L., Takizawa, M., Xhafa, F., Enokido, T. (eds) Web, Artificial Intelligence and Network Applications. WAINA 2019. Advances in Intelligent Systems and Computing, vol 927. Springer, Cham. https://doi.org/10.1007/978-3-030-15035-8_19

Download citation

Publish with us

Policies and ethics