Skip to main content

Application of Heterogeneous Nanocatalysis-Based Advanced Oxidation Processes in Water Purification

An Introduction

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications
  • 95 Accesses

Abstract

Advanced oxidation processes (AOPs) involving the production of strongly oxidizing active substances for elimination of various organic pollutants have shown great potential in current water purification. Among them, especially the heterogeneous nanocatalysis based on nanotechnology and nanomaterials provides a promising alternative due to the adjustable physicochemical properties for enhanced catalytic efficiency. Therefore, in this handbook, we will focus on and summarize the current heterogeneous nanocatalysis water treatment technologies according to our previous work and the latest literature. The characteristics of typical AOPs including photocatalysis, Fenton catalysis, persulfate activation, and ozone oxidation are firstly introduced briefly. Secondly, a comprehensive overview of the used nanotechnology and nanomaterials will be summarized such as their physiochemical characterization, catalytic activity, reaction mechanism, and the key factors that affect their performance. Finally, the application of typical heterogeneous AOPs in practical water purification and the present engineering projects will be given. We think this handbook can provide the quick reference for researchers of the historical development, research status, and development trend of AOPs for water treatment using nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Neyens E, Baeyens J (2003) A review of classic Fenton’s peroxidation as an advanced oxidation technique. J Hazard Mater 98(1–3):33–50

    Article  CAS  Google Scholar 

  2. Jin H, Tian X, Nie Y, Zhou Z, Yang C, Li Y, Lu L (2017) Oxygen vacancy promoted heterogeneous Fenton-like degradation of ofloxacin at pH 3.2–9.0 by Cu substituted magnetic Fe3O4@FeOOH nanocomposite. Environ Sci Technol 51(21):12699–12706

    Article  CAS  Google Scholar 

  3. Zhu Y, Zhu R, Xi Y, Zhu J, Zhu G, He H (2019) Strategies for enhancing the heterogeneous Fenton catalytic reactivity: a review. Appl Catal B Environ 255:117739

    Article  CAS  Google Scholar 

  4. Jin Q, Kang J, Chen Q, Shen J, Guo F, Chen Z (2019) Efficiently enhanced Fenton-like reaction via Fe complex immobilized on silica particles for catalytic hydrogen peroxide degradation of 2,4-dichlorophenol. Appl Catal B Environ 268:118453

    Article  CAS  Google Scholar 

  5. Xu X, Chen W, Zong S, Ren X, Liu D (2019) Magnetic clay as catalyst applied to organics degradation in a combined adsorption and Fenton-like process. Chem Eng J 373:140–149

    Article  CAS  Google Scholar 

  6. Dai C, Tian X, Nie Y, Lin H-M, Yang C, Han B, Wang Y (2018) Surface facet of CuFeO2 nanocatalyst: a key parameter for H2O2 activation in Fenton-like reaction and organic pollutant degradation. Environ Sci Technol 52(11):6518–6525

    Article  CAS  Google Scholar 

  7. Liao X, Wang F, Wang F, Cai Y, Yao Y, Teng B-T, Hao Q, Shuxiang L (2019) Synthesis of (100) surface oriented MIL-88A-Fe with rod-like structure and its enhanced Fenton-like performance for phenol removal. Appl Catal B Environ 259:118064

    Article  CAS  Google Scholar 

  8. Niu H, He D, Yang Y, Lv H, Cai Y, Liang Y (2019) Long-lasting activity of Fe0-C internal microelectrolysis-Fenton system assisted by Fe@C-montmorillonites nanocomposites. Appl Catal B Environ 256:117820

    Article  CAS  Google Scholar 

  9. Yang Z, Gong XB, Peng L, Yang D, Liu Y (2018) Zn0-CNTs-Fe3O4 catalytic in situ generation of H2O2 for heterogeneous Fenton degradation of 4-chlorophenol. Chemosphere 208:665–673

    Article  CAS  Google Scholar 

  10. Yang Z, Zhang X, Pu S, Ni R, Lin Y, Liu Y (2019) Novel Fenton-like system (Mg/Fe-O2) for degradation of 4-chlorophenol. Environ Pollut 250:906–913

    Article  CAS  Google Scholar 

  11. Ling L, Liu Y, Pan D, Lyu W, Xu X, Xiang X, Lyu M, Zhu L (2020) Catalytic detoxification of pharmaceutical wastewater by Fenton-like reaction with activated alumina supported CoMnAl composite metal oxides catalyst. Chem Eng J 381:122607

    Article  CAS  Google Scholar 

  12. Wang H, Jing M, Wu Y, Chen W, Ran Y (2018) Effective degradation of phenol via Fenton reaction over CuNiFe layered double hydroxides. J Hazard Mater 353:53–61

    Article  CAS  Google Scholar 

  13. Tian X, Jin H, Nie Y, Zhou Z, Yang C, Li Y, Wang Y (2017) Heterogeneous Fenton-like degradation of ofloxacin over a wide pH range of 3.6–10.0 over modified mesoporous iron oxide. Chem Eng J 328:397–405

    Article  CAS  Google Scholar 

  14. Wang N, Zhu L, Lei M, She Y, Cao M, Tang H (2011) Ligand-induced drastic enhancement of catalytic activity of nano-BiFeO3 for oxidative degradation of bisphenol A. ACS Catal 1(10):1193–1202

    Article  CAS  Google Scholar 

  15. Sun H, Xie G, He D, Zhang L (2019) Ascorbic acid promoted magnetite Fenton degradation of alachlor: mechanistic insights and kinetic modeling. Appl Catal B Environ 267:118383

    Google Scholar 

  16. Xing M, Xu W, Dong C, Bai Y, Zeng J, Zhou Y, Zhang J, Yin Y (2018) Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes. Chem 4(6):1359–1372

    Article  CAS  Google Scholar 

  17. Tong M, Liu F, Dong Q, Ma Z, Liu W (2020) Magnetic Fe3O4-deposited flower-like MoS2 nanocomposites for the Fenton-like Escherichia coli disinfection and diclofenac degradation. J Hazard Mater 385:121604

    Article  CAS  Google Scholar 

  18. Zhang N, Xue C, Wang K, Fang Z (2020) Efficient oxidative degradation of fluconazole by a heterogeneous Fenton process with Cu-V bimetallic catalysts. Chem Eng J 380:122516

    Article  CAS  Google Scholar 

  19. [Online]. http://www.mcwongtech.com/en/CasesDetail.aspx?id=2074&cid=11

  20. Huang J, Zhang H (2019) Mn-based catalysts for sulfate radical-based advanced oxidation processes: a review. Environ Int 133(Pt A):105141

    Article  CAS  Google Scholar 

  21. Tian X, Gao P, Nie Y, Yang C, Zhou Z, Li Y, Wang Y (2017) A novel singlet oxygen involved peroxymonosulfate activation mechanism for degradation of ofloxacin and phenol in water. Chem Commun (Camb) 53(49):6589–6592

    Article  CAS  Google Scholar 

  22. Tian N, Tian X, Nie Y, Yang C, Zhou Z, Li Y (2018) Biogenic manganese oxide: An efficient peroxymonosulfate activation catalyst for tetracycline and phenol degradation in water. Chem Eng J 352:469–476

    Article  CAS  Google Scholar 

  23. Dong X, Ren B, Sun Z, Li C, Zhang X, Kong M, Zheng S, Dionysiou DD (2019) Monodispersed CuFe2O4 nanoparticles anchored on natural kaolinite as highly efficient peroxymonosulfate catalyst for bisphenol a degradation. Appl Catal B Environ 253:206–217

    Article  CAS  Google Scholar 

  24. Zhu S, Xu Y, Zhu Z, Liu Z, Wang W (2020) Activation of peroxymonosulfate by magnetic Co-Fe/SiO2 layered catalyst derived from iron sludge for ciprofloxacin degradation. Chem Eng J 384:123298

    Article  CAS  Google Scholar 

  25. Zhang A-Y, He Y-Y, Chen Y-P, Feng J-W, Huang N-H, Lian F (2018) Degradation of organic pollutants by Co3O4-mediated peroxymonosulfate oxidation: roles of high-energy {001}-exposed TiO2 support. Chem Eng J 334:1430–1439

    Article  CAS  Google Scholar 

  26. Xiao S, Cheng M, Zhong H, Liu Z, Liu Y, Yang X, Liang Q (2020) Iron-mediated activation of persulfate and peroxymonosulfate in both homogeneous and heterogeneous ways: a review. Chem Eng J 384:123265

    Article  CAS  Google Scholar 

  27. He Y, Zhang J, Zhou H, Yao G, Lai B (2020) Synergistic multiple active species for the degradation of sulfamethoxazole by peroxymonosulfate in the presence of CuO@FeOx@Fe0. Chem Eng J 380:122568

    Article  CAS  Google Scholar 

  28. Shah NS, Khan JA, Sayed M, Khan ZUH, Iqbal J, Imran M, Murtaza B, Zakir A, Polychronopoulou K (2020) Nano zerovalent zinc catalyzed peroxymonosulfate based advanced oxidation technologies for treatment of chlorpyrifos in aqueous solution: a semi-pilot scale study. J Clean Prod 246:119032

    Article  CAS  Google Scholar 

  29. Ye Q, Xu H, Zhang J, Wang Q, Zhou P, Wang Y, Huang X, Huo X, Liu C, Lu J (2020) Enhancement of peroxymonosulfate activation for antibiotics removal by nano zero valent tungsten induced Cu(II)/Cu(I) redox cycles. Chem Eng J 382:123054

    Article  CAS  Google Scholar 

  30. Li W, Li Y, Zhang D, Lan Y, Guo J (2020) CuO-Co3O4@CeO2 as a heterogeneous catalyst for efficient degradation of 2,4-dichlorophenoxyacetic acid by peroxymonosulfate. J Hazard Mater 381:121209

    Article  CAS  Google Scholar 

  31. Tian N, Tian X, Nie Y, Yang C, Zhou Z, Li Y (2019) Enhanced 2, 4-dichlorophenol degradation at pH 3-11 by peroxymonosulfate via controlling the reactive oxygen species over Ce substituted 3D Mn2O3. Chem Eng J 355:448–456

    Article  CAS  Google Scholar 

  32. Ding M, Chen W, Xu H, Shen Z, Lin T, Hu K, Lu CH, Xie Z (2020) Novel alpha-Fe2O3/MXene nanocomposite as heterogeneous activator of peroxymonosulfate for the degradation of salicylic acid. J Hazard Mater 382:121064

    Article  CAS  Google Scholar 

  33. Sun P, Liu H, Feng M, Guo L, Zhai Z, Fang Y, Zhang X, Sharma VK (2019) Nitrogen-sulfur co-doped industrial graphene as an efficient peroxymonosulfate activator: singlet oxygen-dominated catalytic degradation of organic contaminants. Appl Catal B Environ 251:335–345

    Article  CAS  Google Scholar 

  34. Zhou H, Lai L, Wan Y, He Y, Yao G, Lai B (2020) Molybdenum disulfide (MoS2): a versatile activator of both peroxymonosulfate and persulfate for the degradation of carbamazepine. Chem Eng J 384:123264

    Article  CAS  Google Scholar 

  35. Tan C, Lu X, Cui X, Jian X, Hu Z, Dong Y, Liu X, Huang J, Deng L (2019) Novel activation of peroxymonosulfate by an easily recyclable VC@Fe3O4 nanoparticles for enhanced degradation of sulfadiazine. Chem Eng J 363:318–328

    Article  CAS  Google Scholar 

  36. Tan C, Jian X, Dong Y, Lu X, Liu X, Xiang H, Cui X, Deng J, Gao H (2019) Activation of peroxymonosulfate by a novel EGCE@Fe3O4 nanocomposite: free radical reactions and implication for the degradation of sulfadiazine. Chem Eng J 359:594–603

    Article  CAS  Google Scholar 

  37. Dong X, Duan X, Sun Z, Zhang X, Li C, Yang S, Ren B, Zheng S, Dionysiou DD (2020) Natural illite-based ultrafine cobalt oxide with abundant oxygen-vacancies for highly efficient Fenton-like catalysis. Appl Catal B Environ 261:118214

    Article  CAS  Google Scholar 

  38. Gao P, Tian X, Nie Y, Yang C, Zhou Z, Wang Y (2019) Promoted peroxymonosulfate activation into singlet oxygen over perovskite for ofloxacin degradation by controlling the oxygen defect concentration. Chem Eng J 359:828–839

    Article  CAS  Google Scholar 

  39. Guo X, Ma Y-W, Wan J-Q (2012) Advanced treatment of papermaking wastewater by sulfate radical-based advanced oxidation process. China Pulp Paper 31(9):32

    CAS  Google Scholar 

  40. Wang B, Zhang H, Wang F, Xiong X, Tian K, Sun Y, Yu T (2019) Application of heterogeneous catalytic ozonation for refractory organics in wastewater. Catalysts 9(3):241

    Article  CAS  Google Scholar 

  41. Wang J, Chen H (2020) Catalytic ozonation for water and wastewater treatment: recent advances and perspective. Sci Total Environ 704:135249

    Article  CAS  Google Scholar 

  42. Zhu S, Dong B, Yu Y, Bu L, Deng J, Zhou S (2017) Heterogeneous catalysis of ozone using ordered mesoporous Fe3O4 for degradation of atrazine. Chem Eng J 328:527–535

    Article  CAS  Google Scholar 

  43. Liu D, Wang C, Song Y, Wei Y, He L, Lan B, He X, Wang J (2019) Effective mineralization of quinoline and bio-treated coking wastewater by catalytic ozonation using CuFe2O4/Sepiolite catalyst: efficiency and mechanism. Chemosphere 227:647–656

    Article  CAS  Google Scholar 

  44. Wang D, Xu H, Ma J, Lu X, Qi J, Song S (2018) Morphology control studies of MnTiO3 nanostructures with exposed {0001} facets as a high-performance catalyst for water purification. ACS Appl Mater Interfaces 10(37):31631–31640

    Article  CAS  Google Scholar 

  45. Afzal S, Quan X, Lu S (2019) Catalytic performance and an insight into the mechanism of CeO2 nanocrystals with different exposed facets in catalytic ozonation of p-nitrophenol. Appl Catal B Environ 248:526–537

    Article  CAS  Google Scholar 

  46. Zhu H, Ma W, Han H, Han Y, Ma W (2017) Catalytic ozonation of quinoline using nano-MgO: efficacy, pathways, mechanisms and its application to real biologically pretreated coal gasification wastewater. Chem Eng J 327:91–99

    Article  CAS  Google Scholar 

  47. Vittenet J, Aboussaoud W, Mendret J, Pic J-S, Debellefontaine H, Lesage N, Faucher K, Manero M-H, Thibault-Starzyk F, Leclerc H, Galarneau A, Brosillon S (2015) Catalytic ozonation with γ-Al2O3 to enhance the degradation of refractory organics in water. Appl Catal A Gen 504:519–532

    Article  CAS  Google Scholar 

  48. Wang Z, Ma H, Zhang C, Feng J, Pu S, Ren Y, Wang Y (2018) Enhanced catalytic ozonation treatment of dibutyl phthalate enabled by porous magnetic Ag-doped ferrospinel MnFe2O4 materials: performance and mechanism. Chem Eng J 354:42–52

    Article  CAS  Google Scholar 

  49. Xiong Z, Lai B, Yuan Y, Cao J, Yang P, Zhou Y (2016) Degradation of p -nitrophenol (PNP) in aqueous solution by a micro-size Fe0/O3 process (mFe0/O3): optimization, kinetic, performance and mechanism. Chem Eng J 302:137–145

    Article  CAS  Google Scholar 

  50. Zhang J, Guo J, Wu Y, Lan Y, Li Y (2017) Efficient activation of ozone by zero-valent copper for the degradation of aniline in aqueous solution. J Taiwan Inst Chem E 81:335–342

    Article  CAS  Google Scholar 

  51. Xu Y, Lin Z, Zheng Y, Dacquin JP, Royer S, Zhang H (2019) Mechanism and kinetics of catalytic ozonation for elimination of organic compounds with spinel-type CuAl2O4 and its precursor. Sci Total Environ 651(Pt 2):2585–2596

    Article  CAS  Google Scholar 

  52. Chen H, Wang J (2019) Catalytic ozonation of sulfamethoxazole over Fe3O4/Co3O4 composites. Chemosphere 234:14–24

    Article  CAS  Google Scholar 

  53. Yuan X, Xie R, Zhang Q, Sun L, Long X, Xia D (2019) Oxygen functionalized graphitic carbon nitride as an efficient metal-free ozonation catalyst for atrazine removal: performance and mechanism. Sep Purif Technol 211:823–831

    Article  CAS  Google Scholar 

  54. Song Z, Wang M, Wang Z, Wang Y, Li R, Zhang Y, Liu C, Liu Y, Xu B, Qi F (2019) Insights into heteroatom-doped graphene for catalytic ozonation: active centers, reactive oxygen species evolution, and catalytic mechanism. Environ Sci Technol 53:5337–5348

    Article  CAS  Google Scholar 

  55. Zhu G, Zhu J, Jiang W, Zhang Z, Wang J, Zhu Y, Zhang Q (2017) Surface oxygen vacancy induced α-MnO2 nanofiber for highly efficient ozone elimination. Appl Catal B Environ 209:729–737

    Article  CAS  Google Scholar 

  56. Wang Y, Chen L, Cao H, Chi Z, Chen C, Duan X, Xie Y, Qi F, Song W, Liu J, Wang S (2019) Role of oxygen vacancies and Mn sites in hierarchical Mn2O3/LaMnO3-δ perovskite composites for aqueous organic pollutants decontamination. Appl Catal B Environ 245:546–554

    Article  CAS  Google Scholar 

  57. Liu Z-Q, Han B-J, Wen G, Ma J, Wang S-J, Zha R-G, Shen L-P, Wang C (2014) Full-scale application of catalytic ozonation for drinking water treatment: case study in China. J Environ Eng 140(9):A5013002

    Google Scholar 

  58. [Online]. http://aptwater.com/pulseox/case-studies/falconi-tropicana-honda-nv/?tdsourcetag=s_pctim_aiomsg

  59. Zhang S, Gu P, Ma R, Luo C, Wen T, Zhao G, Cheng W, Wang X (2019) Recent developments in fabrication and structure regulation of visible-light-driven g-C3N4-based photocatalysts towards water purification: a critical review. Catal Today 335:65–77

    Article  CAS  Google Scholar 

  60. Ghiyasiyan-Arani M, Masjedi-Arani M (2016) Size controllable synthesis of cobalt vanadate nanostructures with enhanced photocatalytic activity for the degradation of organic dyes. J Mol Catal A Chem 425:31–42

    Article  CAS  Google Scholar 

  61. Li J, Li X, Yin Z, Wang X, Ma H, Wang L (2019) Synergetic effect of facet junction and specific facet activation of ZnFe2O4 nanoparticles on photocatalytic activity improvement. ACS Appl Mater Interfaces 11(32):29004–29013

    Article  CAS  Google Scholar 

  62. Wang C-Y, Zhang Y-J, Wang W-K, Pei D-N, Huang G-X, Chen J-J, Zhang X, Yu H-Q (2018) Enhanced photocatalytic degradation of bisphenol A by Co-doped BiOCl nanosheets under visible light irradiation. Appl Catal B Environ 221:320–328

    Article  CAS  Google Scholar 

  63. Xing Y, Gao X, Ji G, Liu Z, Du C (2019) Synthesis of carbon doped Bi2MoO6 for enhanced photocatalytic performance and tumor photodynamic therapy efficiency. Appl Surf Sci 465:369–382

    Article  CAS  Google Scholar 

  64. Liu Y, Shen S, Zhang J, Zhong W, Huang X (2019) Cu2−xSe/CdS composite photocatalyst with enhanced visible light photocatalysis activity. Appl Surf Sci 478:762–769

    Article  CAS  Google Scholar 

  65. Zhao W, Feng Y, Huang H, Zhou P, Li J, Zhang L, Dai B, Xu J, Zhu F, Sheng N, Leung DYC (2019) A novel Z-scheme Ag3VO4/BiVO4 heterojunction photocatalyst: study on the excellent photocatalytic performance and photocatalytic mechanism. Appl Catal B Environ 245:448–458

    Article  CAS  Google Scholar 

  66. Cai J, Huang J, Lai Y (2017) 3D Au-decorated Bi2MoO6 nanosheet/TiO2 nanotube array heterostructure with enhanced UV and visible-light photocatalytic activity. J Mater Chem A 5(31):16422

    Article  CAS  Google Scholar 

  67. Wen J, Xie J, Chen X, Li X (2017) A review on g-C3N4-based photocatalysts. Appl Surf Sci 391:72–123

    Article  CAS  Google Scholar 

  68. Sharma S, Dutta V, Singh P, Raizada P, Rahmani-Sani A, Hosseini-Bandegharaei A, Thakur VK (2019) Carbon quantum dot supported semiconductor photocatalysts for efficient degradation of organic pollutants in water: a review. J Clean Prod 228:755–769

    Article  CAS  Google Scholar 

  69. Li X, Yu J, Wageh S, Al-Ghamdi AA, Xie J (2016) Graphene in photocatalysis: a review. Small 12:6640–6696

    Article  CAS  Google Scholar 

  70. Chen F, Yang Q, Li X, Zeng G, Wang D, Niu C, Zhao J, An H, Xie T, Deng Y (2017) Hierarchical assembly of graphene-bridged Ag3PO4/Ag/BiVO4 (040) Z-scheme photocatalyst: An efficient, sustainable and heterogeneous catalyst with enhanced visible-light photoactivity towards tetracycline degradation under visible light irradiation. Appl Catal B Environ 200:330–342

    Article  CAS  Google Scholar 

  71. Yue X, Miao X, Ji Z, Shen X, Zhou H, Kong L, Zhu G, Li X, Shah SA (2018) Nitrogen-doped carbon dots modified dibismuth tetraoxide microrods: a direct Z-scheme photocatalyst with excellent visible-light photocatalytic performance. J Colloid Interf Sci 531:473–482

    Article  CAS  Google Scholar 

  72. Xia P, Zhu B, Cheng B, Yu J, Xu J (2017) 2D/2D g-C3N4/MnO2 nanocomposite as a direct Z-scheme photocatalyst for enhanced photocatalytic activity. ACS Sustain Chem Eng 6(1):965–973

    Article  CAS  Google Scholar 

  73. Xu Y, Li H, Sun B, Qiao P, Ren L, Tian G, Jiang B, Pan K, Zhou W (2020) Surface oxygen vacancy defect-promoted electron-hole separation for porous defective ZnO hexagonal plates and enhanced solar-driven photocatalytic performance. Chem Eng J 379:122295

    Article  CAS  Google Scholar 

  74. Jia Y, Li S, Ma H, Gao J, Zhu G, Zhang F, Park JY, Cha S, Bae JS, Liu C (2020) Oxygen vacancy rich Bi2O4-Bi4O7-BiO2−x composites for UV-vis-NIR activated high efficient photocatalytic degradation of bisphenol A. J Hazard Mater 382:121121

    Article  CAS  Google Scholar 

  75. Sörensen M, Zegenhagen F, Weckenmann J (2015) State of the art wastewater treatment in pharmaceutical and chemical industry by advanced oxidation. Pharm Ind 77(4):594–607

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xike Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dai, C., Tian, X., Yang, C., Nie, Y., Wang, Y. (2021). Application of Heterogeneous Nanocatalysis-Based Advanced Oxidation Processes in Water Purification. In: Kharissova, O.V., Martínez, L.M.T., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-11155-7_64-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11155-7_64-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11155-7

  • Online ISBN: 978-3-030-11155-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Application of Heterogeneous Nanocatalysis-Based Advanced Oxidation Processes in Water Purification
    Published:
    04 March 2021

    DOI: https://doi.org/10.1007/978-3-030-11155-7_64-2

  2. Original

    Current Water Treatment Technologies
    Published:
    28 November 2020

    DOI: https://doi.org/10.1007/978-3-030-11155-7_64-1