Skip to main content

Polymer/Nanocarbon Nanocomposite-Based Eco-friendly Textiles

  • Living reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications
  • 113 Accesses

Abstract

Eco-friendly materials are the subject of recent research interest in various academia and industry fields. Eco-materials or eco-friendly materials are also termed as the green materials. These are environment-friendly materials, usually obtained from renewable resources. Exploitation of the eco-materials has been tremendously increased for the production of eco-textiles. Use of the eco-friendly polymers has become widespread owing to growing interest in biodegradability, sustainability, recyclability, and environmental concerns. Polymeric eco-materials have various potential uses in textile industry. In addition to the eco-friendly polymers, the nanocomposite materials based on eco-polymers and nanofillers have been prepared. Recently, the polymer-based nanocomposite materials have also been focused for eco-textiles. This chapter deals with various essential aspects of the eco-friendly textile-related nanomaterials. The nanocarbon and inorganic nanoparticle-based nanofillers have been employed in the polymeric nanocomposite for the textile purposes. The nanocarbons including carbon nanotube, graphene, and carbon black have been fixated for textiles. Similarly, the inorganic nanoparticles such as metal nanoparticles, metal oxides, and inorganic nanofillers have been used in eco-friendly textiles. The polymer/nanocarbon nanocomposite-based eco-friendly textiles have shown electrical conductivity, strength, strain, toughness, chemical stability, flame resistance, antibacterial, and other useful properties. The polymer-based nanomaterials have countless opportunities as textile constituents. Eco-friendly nanocomposite-based textile materials have found applications in the military and defense, electronic textiles, antibacterial, and self-healing materials. The chapter also throws light on future prospects of eco-friendly textile nanomaterials. The challenges and advancements in the application areas of the polymer/nanocarbon nanocomposite-derived eco-friendly textiles can be overcome by using the progressive nanoparticles, hybrid nanofillers in eco-polymers, advanced processing techniques, and processing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Shipra K (2014) Application of nanotechnology in textile. Asian J Home Sci 9(2):580–583

    Article  Google Scholar 

  2. Yetisen AK et al (2016) Nanotechnology in textiles. ACS Nano 10(3):3042–3068

    Article  CAS  Google Scholar 

  3. Mohaná Kumar G (2015) Highly efficient CNT functionalized cotton fabrics for flexible/wearable heating applications. RSC Adv 5(14):10697–10702

    Article  CAS  Google Scholar 

  4. Sawhney APS et al (2008) Modern applications of nanotechnology in textiles. Text Res J 78(8):731–739

    Article  CAS  Google Scholar 

  5. Avila AG, Hinestroza JP (2008) Smart textiles: tough cotton. Nat Nanotechnol 3(8):458

    Article  CAS  Google Scholar 

  6. Bao L, Li X (2012) Towards textile energy storage from cotton T-shirts. Adv Mater 24(24):3246–3252

    Article  CAS  Google Scholar 

  7. Montazer M, Seifollahzadeh S (2011) Enhanced self-cleaning, antibacterial and UV protection properties of nano TiO2 treated textile through enzymatic pretreatment. Photochem Photobiol 87(4):877–883

    Article  CAS  Google Scholar 

  8. Karthik S et al (2017) Acalypha indica–mediated green synthesis of ZnO nanostructures under differential thermal treatment: effect on textile coating, hydrophobicity, UV resistance, and antibacterial activity. Adv Powder Technol 28(12):3184–3194

    Article  CAS  Google Scholar 

  9. Rubeziene V et al (2012) Effects of light exposure on textile durability. In: Understanding and improving the durability of textiles. Woodhead Publishing, Oxford, pp 104–124

    Chapter  Google Scholar 

  10. Shahid M, Mohammad F (2013) Perspectives for natural product based agents derived from industrial plants in textile applications–a review. J Clean Prod 57:2–18

    Article  Google Scholar 

  11. Jang J, Han JI (2017) High performance cylindrical capacitor as a relative humidity sensor for wearable computing devices. J Electrochem Soc 164(4):B136–B141

    Article  CAS  Google Scholar 

  12. Caschera D et al (2014) Effects of plasma treatments for improving extreme wettability behavior of cotton fabrics. Cellulose 21(1):741–756

    Article  CAS  Google Scholar 

  13. Kausar A (2019) Mechanical and biodegradation properties of nanostructured polymer composites under degradation behavior. In: Nanostructured polymer composites for biomedical applications. Elsevier, Cambridge, MA, pp 69–86

    Chapter  Google Scholar 

  14. Karthikeyan M, Kumar KS, Elango K (2011) Batch sorption studies on the removal of fluoride ions from water using eco-friendly conducting polymer/bio-polymer composites. Desalination 267(1):49–56

    Article  CAS  Google Scholar 

  15. Kausar A (2020) Nanocellulose in polymer nanocomposite. In: Sustainable nanocellulose and nanohydrogels from natural sources. Elsevier, Amsterdam, pp 357–366

    Chapter  Google Scholar 

  16. Muhammadi et al (2015) Bacterial polyhydroxyalkanoates-eco-friendly next generation plastic: production, biocompatibility, biodegradation, physical properties and applications. Green Chem Lett Rev 8(3–4):56–77

    Article  CAS  Google Scholar 

  17. Kausar A (2018) Eco-polymer and carbon nanotube composite: safe technology. In: Handbook of ecomaterials. Springer, Cham, pp 1–16

    Google Scholar 

  18. Singh AP, Devi AS (2019) International journal of advanced scientific research and management 4:47–51

    Google Scholar 

  19. Ma X et al (2017) Natural polysaccharide composites based on modified cellulose spheres and plasticized chitosan matrix. Food Hydrocoll 66:276–285

    Article  CAS  Google Scholar 

  20. Cunha AG, Gandini A (2010) Turning polysaccharides into hydrophobic materials: a critical review. Part 1. Cellulose. Cellulose 17(5):875–889

    CAS  Google Scholar 

  21. Makowski T (2020) Hydrophobization of cotton fabric with silanes with different substituents. Cellulose 27(1):1–9

    CAS  Google Scholar 

  22. Zhang J et al (2019) High value-added monomer chemicals and functional bio-based materials derived from polymeric components of lignocellulose by organosolv fractionation. Biofuels Bioprod Biorefin 14:371

    Google Scholar 

  23. Bhatia A et al (2007) Compatibility of biodegradable poly (lactic acid)(PLA) and poly (butylene succinate)(PBS) blends for packaging application. Korea-Aust Rheol J 19(3):125–131

    Google Scholar 

  24. Rosli NA et al (2018) The contribution of eco-friendly bio-based blends on enhancing the thermal stability and biodegradability of poly (lactic acid). J Clean Prod 198:987–995

    CAS  Google Scholar 

  25. Dutta J, Dutta P (2006) Lactic acid and lactic acid based industries: ecofriendly in nature. Everyman’s Sci XLI(2):103

    Google Scholar 

  26. Hidayat A, Tachibana S (2012) Characterization of polylactic acid (PLA)/kenaf composite degradation by immobilized mycelia of Pleurotus ostreatus. Int Biodeterior Biodegradation 71:50–54

    CAS  Google Scholar 

  27. Venkatesan H, Periyasamy A (2017) Eco-fibers in the textile industry. In: Handbook of ecomaterials. Springer International Publishing, Cham, pp 1–21

    Google Scholar 

  28. Shao J, Fan Q (2012) Eco-dyeing, finishing and green chemistry. Trans Tech Publications, Zurich

    Google Scholar 

  29. Joshi M, Bhattacharyya A (2011) Nanotechnology–a new route to high-performance functional textiles. Text Prog 43(3):155–233

    Article  Google Scholar 

  30. Kale KH, Palaskar S (2011) Atmospheric pressure plasma polymerization of hexamethyldisiloxane for imparting water repellency to cotton fabric. Text Res J 81(6):608–620

    Article  CAS  Google Scholar 

  31. Zhang R et al (2012) Carbon nanotube polymer coatings for textile yarns with good strain sensing capability. Sensors Actuators A Phys 179:83–91

    Article  CAS  Google Scholar 

  32. Majeed H (2019) Process modification for improvement in conventional reactive printing of cotton fabric. University of Agriculture, Faisalabad

    Google Scholar 

  33. Hassanzadeh S, Hasani H (2017) A review on milkweed fiber properties as a high-potential raw material in textile applications. J Ind Text 46(6):1412–1436

    Article  CAS  Google Scholar 

  34. Palamutcu S (2017) Sustainable textile technologies. In: Textiles and clothing sustainability. Springer, Singapore, pp 1–22

    Google Scholar 

  35. Nettles JE (1983) Handbook of chemical specialties: textile fiber processing, preparation, and bleaching. Wiley, New York

    Google Scholar 

  36. Nayak L, Mishra SP (2016) Prospect of bamboo as a renewable textile fiber, historical overview, labeling, controversies and regulation. Fash Text 3(1):2

    Article  Google Scholar 

  37. Ray L Jr (1952) The role of synthetic fibers in the textile industry of the future. Text Res J 22(2):144–151

    Article  Google Scholar 

  38. Gorbatikh L, Wardle BL, Lomov SV (2016) Hierarchical lightweight composite materials for structural applications. MRS Bull 41(9):672–677

    Article  Google Scholar 

  39. Lu X, Qu H, Skorobogatiy M (2017) Piezoelectric micro-and nanostructured fibers fabricated from thermoplastic nanocomposites using a fiber drawing technique: comparative study and potential applications. ACS Nano 11(2):2103–2114

    Article  CAS  Google Scholar 

  40. Jang BZ et al (2005) Nanotube fiber reinforced composite materials and method of producing fiber reinforced composites. Google Patents

    Google Scholar 

  41. Njuguna J, Pielichowski K, Desai S (2008) Nanofiller-reinforced polymer nanocomposites. Polym Adv Technol 19(8):947–959

    Article  CAS  Google Scholar 

  42. Tate J et al (2013) Carbon/phenolic nanocomposites as advanced thermal protection material in aerospace applications. J Composites 2013:1

    Article  CAS  Google Scholar 

  43. Bay MA (2018) Bio composite ABS/CF material. Google Patents

    Google Scholar 

  44. Alongi J (2013) Update on flame retardant textiles. Smithers Rapra, Shawbury

    Google Scholar 

  45. Song W-L et al (2016) Strong and thermostable polymeric graphene/silica textile for lightweight practical microwave absorption composites. Carbon 100:109–117

    Article  CAS  Google Scholar 

  46. Feller J, Grohens Y (2004) Evolution of electrical properties of some conductive polymer composite textiles with organic solvent vapours diffusion. Sensors Actuators B Chem 97(2–3):231–242

    Article  CAS  Google Scholar 

  47. Nilsson E et al (2013) Poling and characterization of piezoelectric polymer fibers for use in textile sensors. Sensors Actuators A Phys 201:477–486

    Article  CAS  Google Scholar 

  48. Han S et al (2008) Enhancing the thermal conductivity and compressive modulus of carbon fiber polymer–matrix composites in the through-thickness direction by nanostructuring the interlaminar interface with carbon black. Carbon 46(7):1060–1071

    Article  CAS  Google Scholar 

  49. Heo JS et al (2018) Recent progress of textile-based wearable electronics: a comprehensive review of materials, devices, and applications. Small 14(3):1703034

    Article  CAS  Google Scholar 

  50. Bogatyrov VM et al (2017) Effect of the surface properties of resorcinol–formaldehyde resin/carbon nanocomposites and their carbonization products on the solid-phase extraction of explosives. RSC Adv 7(12):7033–7040

    Article  CAS  Google Scholar 

  51. Szeluga U, Kumanek B, Trzebicka B (2015) Synergy in hybrid polymer/nanocarbon composites. A review. Compos A: Appl Sci Manuf 73:204–231

    Article  CAS  Google Scholar 

  52. Prabhu K, Teli M, Waghmare NG (2011) Eco-friendly dyeing using natural mordant extracted from Emblica officinalis G. fruit on cotton and silk fabrics with antibacterial activity. Fibers Polym 12(6):753

    Article  CAS  Google Scholar 

  53. Daoud WA, Xin JH, Szeto YS (2005) Polyethylenedioxythiophene coatings for humidity, temperature and strain sensing polyamide fibers. Sensors Actuators B Chem 109(2):329–333

    Article  CAS  Google Scholar 

  54. Shunin Y et al (2015) Modelling and simulation of CNTs-and GNRs-based nanocomposites for nanosensor devices. Comput Model New Technol 19(5):14–20

    CAS  Google Scholar 

  55. Safdari M, Al-Haik MS (2018) A review on polymeric nanocomposites: effect of hybridization and synergy on electrical properties. In: Carbon-based polymer nanocomposites for environmental and energy applications. Elsevier, Amsterdam, Netherlands, pp 113–146

    Google Scholar 

  56. Lin Y et al (2016) A highly stretchable and sensitive strain sensor based on graphene–elastomer composites with a novel double-interconnected network. J Mater Chem C 4(26):6345–6352

    Article  CAS  Google Scholar 

  57. Du D, Tang Z, Ouyang J (2018) Highly washable e-textile prepared by ultrasonic nanosoldering of carbon nanotubes onto polymer fibers. J Mater Chem C 6(4):883–889

    Article  CAS  Google Scholar 

  58. Wilusz E (2008) Military textiles. Elsevier, Cambridge

    Book  Google Scholar 

  59. Amara J (2008) Military industrialization and economic development: Jordan’s defense industry. Rev Financ Econ 17(2):130–145

    Article  Google Scholar 

  60. Desai D, Jain K, Solanki N (2012) Industrial and commercial applications of used defense technical textiles polymer product recycling. In: Macromolecular symposia. 320:57–60

    Google Scholar 

  61. Sparks E (2012) Advances in military textiles and personal equipment. Elsevier, Cambridge, UK

    Google Scholar 

  62. Ledbury J, Jenkins E (2015) Composite fabrics for functional clothing. In: Hayes S, Venkatraman P (eds) Materials and technology for sportswear and performance apparel. CRC Press, USA, pp 104–152

    Google Scholar 

  63. LaTourrette T et al (2003) Protecting emergency responders volume 2: community views of safety and health risks and personal protection needs. Rand Corporation, Santa Monica

    Google Scholar 

  64. Syduzzaman M et al (2015) Smart textiles and nano-technology: a general overview. J Text Sci Eng 5:1000181

    Google Scholar 

  65. Baumbach J (2012) Colour and camouflage: design issues in military clothing. In: Advances in military textiles and personal equipment. Elsevier, UK, pp 79–102

    Google Scholar 

  66. Albertoni A (2011) Long wave infrared metamaterials and nano-materials design, simulation, and laboratory test for target camouflage in the defence application. In: Electro-optical and infrared systems: technology and applications VIII. International Society for Optics and Photonics, Prague, Czech Republic

    Google Scholar 

  67. Kilinc-Balci F, Elmogahzy Y (2008) Testing and analyzing comfort properties of textile materials for the military. In: Military textiles. Woodhead Publishing Textiles, Cambridge, pp 107–136

    Google Scholar 

  68. Prasad VV, Talupula S (2018) A review on reinforcement of basalt and aramid (Kevlar 129) fibers. Mater Today: Proc 5(2):5993–5998

    Google Scholar 

  69. Bharath S et al (2015) Multi-walled carbon nanotube-coated cotton fabric for possible energy storage devices. Bull Mater Sci 38(1):169–172

    CAS  Google Scholar 

  70. Wainwright H (2016) Design, evaluation, and applications of electronic textiles. In: Performance testing of textiles. Elsevier, UK, pp 193–213

    Google Scholar 

  71. Nakanishi W et al (2014) Bioactive nanocarbon assemblies: nanoarchitectonics and applications. Nano Today 9(3):378–394

    Article  CAS  Google Scholar 

  72. Morais DS, Guedes RM, Lopes MA (2016) Antimicrobial approaches for textiles: from research to market. Materials 9(6):498

    Article  CAS  Google Scholar 

  73. Velmurugan P et al (2014) Antimicrobial fabrication of cotton fabric and leather using green-synthesized nanosilver. Carbohydr Polym 106:319–325

    Article  CAS  Google Scholar 

  74. Perminova L et al (2012) Carbon-silica composite matrices for preparing heterogeneous biocatalysts with glucose isomerase activity. Kinet Catal 53(1):145–153

    Article  CAS  Google Scholar 

  75. Oh W-C, Jung A-R, Ko W-B (2009) Characterization and relative photonic efficiencies of a new nanocarbon/TiO2 composite photocatalyst designed for organic dye decomposition and bactericidal activity. Mater Sci Eng C 29(4):1338–1347

    Article  CAS  Google Scholar 

  76. Agarwal H, Kumar SV, Rajeshkumar S (2017) A review on green synthesis of zinc oxide nanoparticles–an eco-friendly approach. Resour-Effi Technol 3(4):406–413

    Google Scholar 

  77. Ammayappan L, Moses JJ (2009) Study of antimicrobial activity of aloevera, chitosan, and curcumin on cotton, wool, and rabbit hair. Fibers Polym 10(2):161–166

    Article  CAS  Google Scholar 

  78. Roy D, Cambre JN, Sumerlin BS (2010) Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci 35(1–2):278–301

    Article  CAS  Google Scholar 

  79. Costagliola G, Bosia F, Pugno NM (2020) Random fuse model in the presence of self-healing. New J Phys 22:033005

    Article  Google Scholar 

  80. Xuan H et al (2018) Self-healing, antibacterial and sensing nanoparticle coating and its excellent optical applications. Sensors Actuators B Chem 257:1110–1117

    Article  CAS  Google Scholar 

  81. Zidan A, El-Saadany EF (2012) A cooperative multiagent framework for self-healing mechanisms in distribution systems. IEEE Trans Smart Grid 3(3):1525–1539

    Article  Google Scholar 

  82. Peng Y, Guo Z (2016) Recent advances in biomimetic thin membranes applied in emulsified oil/water separation. J Mater Chem A 4(41):15749–15770

    Article  CAS  Google Scholar 

  83. Mhlanga N, Mphahlele K (2020) Self-healing substrates: fabrication, properties and applications. In: Self-standing substrates. Springer, USA, pp 235–267

    Google Scholar 

  84. Zhang MQ, Rong MZ (2011) Self-healing polymers and polymer composites. Wiley, Singapore

    Google Scholar 

  85. den Brabander M, Fischer HR, Garcia SJ (2019) Self-healing polymeric systems: concepts and applications. In: Smart polymers and their applications. Elsevier, India, pp 379–409

    Google Scholar 

  86. Garcia SJ (2014) Effect of polymer architecture on the intrinsic self-healing character of polymers. Eur Polym J 53:118–125

    Article  CAS  Google Scholar 

  87. Gao D et al (2020) Polyacrylate crosslinked with furyl alcohol grafting bismaleimide: a self-healing polymer coating. Prog Org Coat 139:105475

    Article  CAS  Google Scholar 

  88. Guadagno L et al (2017) Development of self-healing multifunctional materials. Compos Part B 128:30–38

    Article  CAS  Google Scholar 

  89. Urdl K et al (2017) Self-healing of densely crosslinked thermoset polymers – a critical review. Prog Org Coat 104:232–249

    Article  CAS  Google Scholar 

  90. Pulikkalparambil H, Siengchin S, Parameswaranpillai J (2018) Corrosion protective self-healing epoxy resin coatings based on inhibitor and polymeric healing agents encapsulated in organic and inorganic micro and nanocontainers. Nano-struct Nano-objects 16:381–395

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kausar, A. (2020). Polymer/Nanocarbon Nanocomposite-Based Eco-friendly Textiles. In: Kharissova, O.V., Martínez, L.M.T., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-11155-7_57-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11155-7_57-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11155-7

  • Online ISBN: 978-3-030-11155-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics