Skip to main content

Nanomaterials and Nanocoatings for Alternative Antimicrobial Therapy

  • Living reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications

Abstract

There have been increasing incidences of pathogenic microorganisms that are resistant to antimicrobial agents thereby constituting serious health concerns. The last decade has perceived substantial increase in global use of nanoparticles as advanced tools to combat high levels of antimicrobial resistance. Particle size and the nature of materials used in the preparation of nanoparticles are two very essential factors that determine its efficacies of resultant antimicrobial effectiveness. This was observed to result in the enhancement of microbicidal effects. Nanoparticles’ shape also influences its antimicrobial activities. Organic and inorganic nanoparticles have been extensively studied and reported to have antimicrobial actions against microbial cells. Microbial species are eliminated by microbicidal effects of NPs, such as generation of free radicals, DNA interactions, and by free metal ions release culminating in cell membrane damage. This book chapter focuses on discussing the recent findings as regards the antimicrobial effects of most commonly employed nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Malarkodi C, Rajeshkumar S, Paulkumar K et al (2014) Biosynthesis and antimicrobial activity of semiconductor nanoparticles against oral pathogens. Bioinorg Chem Appl 347167:1–10. https://doi.org/10.1155/2014/347167

    Article  CAS  Google Scholar 

  2. Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17–MR71

    Article  Google Scholar 

  3. Adibkia KH, Barzegar-Jalali M, Nokhodchi A et al (2009) A review on the methods of preparation of pharmaceutical nanoparticles. Pharm Sci 15(4):303–314

    Google Scholar 

  4. Besinis A, De Peralta T, Handy RD (2014) The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology 8(1):1–16

    Article  CAS  Google Scholar 

  5. Seil JT, Webster TJ (2012) Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomedicine 7:2767

    CAS  Google Scholar 

  6. Mohammadi G, Valizadeh H, Barzegar-Jalali M et al (2010) Development of azithromycin–PLGA nanoparticles: physicochemical characterization and antibacterial effect against Salmonella typhi. Colloids Surf B: Biointerfaces 80(1):34–39

    Article  CAS  Google Scholar 

  7. Fellahi O, Sarma RK, Das MR et al (2013) The antimicrobial effect of silicon nanowires decorated with silver and copper nanoparticles. Nanotechnology 24(49):495101

    Article  CAS  Google Scholar 

  8. Mohammadi G, Nokhodchi A, Barzegar-Jalali M et al (2011) Physicochemical and anti-bacterial performance characterization of clarithromycin nanoparticles as colloidal drug delivery system. Colloids Surf B: Biointerfaces 88(1):39–44

    Article  CAS  Google Scholar 

  9. Di Gianvincenzo P, Marradi M, Martínez-Ávila OM et al (2010) Gold nanoparticles capped with sulfate-ended ligands as anti-HIV agents. Bioorg Med Chem Lett 20(9):2718–2721

    Article  Google Scholar 

  10. Khezerlou A, Alizadeh-Sani M, Azizi-Lalabadi M et al (2018) Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses. Microb Pathog 123:505–526

    Article  CAS  Google Scholar 

  11. Lenaghan SC, Zhu Q, Xia L et al (2012) Extraction of organic nanoparticles from plants. Methods Mol Biol 906:381–391. https://doi.org/10.1007/978-1-61779-953-2_31

    Article  CAS  Google Scholar 

  12. Romero G, Moya SE (2012) Synthesis of organic nanoparticles. In: Nanobiotechnology: inorganic nanoparticles vs organic nanoparticles. Elsevier, Amsterdam, pp 115–141

    Chapter  Google Scholar 

  13. Pareek V, Bhargava A, Gupta R et al (2017) Synthesis and applications of noble metal nanoparticles: a review. Adv Sci Eng Med 9:527–544. https://doi.org/10.1166/asem.2017.2027

    Article  CAS  Google Scholar 

  14. Destrée C, Debuigne F, Jeunieau L et al (2006) Mechanism of formation of inorganic and organic nanoparticles from microemulsions. Adv Colloid Interf Sci 123–126:353–367. https://doi.org/10.1016/j.cis.2006.05.022

    Article  CAS  Google Scholar 

  15. Kumar R, Lal S (2014) Synthesis of organic nanoparticles and their applications in drug delivery and food nanotechnology: a review. J Nanomater Mol Nanotechnol 3:4. https://doi.org/10.4172/2324-8777.1000150

    Article  Google Scholar 

  16. Pan K, Zhong Q (2016) Organic nanoparticles in foods: fabrication, characterization, and utilization. Annu Rev Food Sci Technol 7:245–266

    Article  CAS  Google Scholar 

  17. Rai M, Yadav A, Cioffi N (2012) Silver nanoparticles as nano-antimicrobials: bioactivity, benefits and bottlenecks. In: Cioffi N, Rai M (eds) Nano-antimicrobials: progress and prospects. Springer, Heidelberg, pp 211–224

    Chapter  Google Scholar 

  18. Srinivas K (2016) The current role of nanomaterials in cosmetics. J Chem Pharm Res 8(5):906–914

    CAS  Google Scholar 

  19. Mu L, Sprando RL (2010) Application of nanotechnology in cosmetics. Pharm Res 27(8):1746–1749

    Article  CAS  Google Scholar 

  20. Mitragotri S, Stayton P (2014) Organic nanoparticles for drug delivery and imaging. MRS Bull 39(3):219–223

    Article  CAS  Google Scholar 

  21. Shaikh S, Nazam N, Rizvi SMD et al (2019) Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. Int J Mol Sci 20:2468. https://doi.org/10.3390/ijms20102468

    Article  CAS  Google Scholar 

  22. Zia-ur-Rehman M, Mubarak AK, Tariq K et al (2016) Applications of plant terpenoids in the synthesis of colloidal silver nanoparticles. Adv Colloid Interf Sci 232:132–141

    Google Scholar 

  23. Drulis-Kawa Z, Dorotkiewicz-Jach A (2010) Liposomes as delivery systems for antibiotics. Int J Pharm 387(1–2):187–198

    Article  CAS  Google Scholar 

  24. Pushparaj SP, Nellore J, Balaraman RM et al (2017) Enhancement of antimicrobial activity by liposomal oleic acid-loaded antibiotics for the treatment of multidrug-resistant Pseudomonas aeruginosa. J Artif Cells Nanomed Biotechnol 46(2):268–273. https://doi.org/10.1080/21691401.2017.1307209

    Article  CAS  Google Scholar 

  25. Didi H, Jon M (2015) Ferritin family proteins and their use in bionanotechnology. New Biotechnol 32(6):651–657

    Article  Google Scholar 

  26. Wang Z, Gao H, Zhang Y et al (2017) Functional ferritin nanoparticles for biomedical applications. Front Chem Sci Eng 11(4):633–646. https://doi.org/10.1007/s11705-017-1620-8

    Article  CAS  Google Scholar 

  27. Tülü M, Ertürk AS (2012) Dendrimers as antibacterial agents. In: Bobbarala V (ed) A search for antibacterial agents. IntechOpen, London, pp 89–106. https://doi.org/10.5772/46051

    Chapter  Google Scholar 

  28. Severino P, Silveira E, Loureiro K et al (2017) Antimicrobial activity of polymyxin-loaded solid lipid nanoparticles (PLX-SLN): characterization of physicochemical properties and in vitro efficacy. Eur J Pharm Sci 106:177. https://doi.org/10.1016/j.ejps.2017.05.063

    Article  CAS  Google Scholar 

  29. Fernández-Villa D, Aguilar MR, Rojo L (2019) Folic acid antagonists: antimicrobial and immunomodulating mechanisms and applications. Int J Mol Sci 20(20):4996. https://doi.org/10.3390/ijms20204996

    Article  CAS  Google Scholar 

  30. González-Paredes A, Sitia L, Ruyra A et al (2019) Solid lipid nanoparticles for the delivery of anti-microbial oligonucleotides. Eur J Pharm Biopharm 134:166–177. https://doi.org/10.1016/j.ejpb.2018.11.017

    Article  CAS  Google Scholar 

  31. Lam SJ, Wong E, Boyer C et al (2017) Antimicrobial polymeric nanoparticles. Prog Polym Sci 76:40. https://doi.org/10.1016/j.progpolymsci.2017.07.007

    Article  CAS  Google Scholar 

  32. Cheow WS, Hadinoto K (2014) Antibiotic polymeric nanoparticles for biofilm-associated infection therapy. Methods Mol Biol 147:227–238. https://doi.org/10.1007/978-1-4939-0467-9_16

    Article  CAS  Google Scholar 

  33. Pinto-Alphandary H, Andremont A, Couvreur P (2000) Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications. Int J Antimicrob Agents 13:155–168. https://doi.org/10.1016/S0924-8579(99)00121-1

    Article  CAS  Google Scholar 

  34. Haghighi F, Roudbar Mohammadi S, Mohammadi P et al (2013) Antifungal activity of TiO2 nanoparticles and EDTA on Candida albicans biofilms. Infect Epidemiol Microbiol 1(1):33–38

    Google Scholar 

  35. Maneerat C, Hayata Y (2006) Antifungal activity of TiO2 photocatalysis against Penicillium expansum in vitro and in fruit tests. Int J Food Microbiol 107(2):99–103

    Article  CAS  Google Scholar 

  36. Roy AS, Parveen A, Koppalkar AR et al (2010) Effect of nano-titanium dioxide with different antibiotics against methicillin-resistant Staphylococcus aureus. J Biomater Nanobiotechnol 1(1):37

    Article  CAS  Google Scholar 

  37. Gumiero M, Peressini D, Pizzariello A et al (2013) Effect of TiO2 photocatalytic activity in a HDPE-based food packaging on the structural and microbiological stability of a short-ripened cheese. Food Chem 138(2–3):1633–1640

    Article  CAS  Google Scholar 

  38. Chorianopoulos NG, Tsoukleris DS, Panagou EZ et al (2011) Use of titanium dioxide (TiO2) photocatalysts as alternative means for Listeria monocytogenes biofilm disinfection in food processing. Food Microbiol 28(1):164–170

    Article  CAS  Google Scholar 

  39. Sani MA, Ehsani A, Hashemi M (2017) Whey protein isolate/cellulose nanofibre/TiO2 nanoparticle/rosemary essential oil nanocomposite film: its effect on microbial and sensory quality of lamb meat and growth of common foodborne pathogenic bacteria during refrigeration. Int J Food Microbiol 251:8–14

    Article  CAS  Google Scholar 

  40. Li LH, Yen MY, Ho CC et al (2013) Non-cytotoxic nanomaterials enhance antimicrobial activities of cefmetazole against multidrug-resistant Neisseria gonorrhoeae. PLoS One 8:5

    Google Scholar 

  41. Xie Y, He Y, Irwin PL et al (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol 77(7):2325–2331

    Article  CAS  Google Scholar 

  42. Padmavathy N, Vijayaraghavan R (2008) Enhanced bioactivity of ZnO nanoparticles – an antimicrobial study. Sci Technol Adv Mater 9(3):035004

    Article  Google Scholar 

  43. Azam A, Ahmed AS, Oves M et al (2012) Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int J Nanomedicine 7:6003–6009. https://doi.org/10.2147/IJN.S35347

    Article  CAS  Google Scholar 

  44. Zhang L, Ding Y, Povey M et al (2008) ZnO nanofluids – a potential antibacterial agent. Prog Nat Sci 18(8):939–944

    Article  CAS  Google Scholar 

  45. Ravindranadh MRK, Mary TR (2013) Development of ZnO nanoparticles for clinical applications. J Chem Biol Phys Sci 4(1):469

    Google Scholar 

  46. Hajipour MJ, Fromm KM, Ashkarran AA et al (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30(10):499–511

    Article  CAS  Google Scholar 

  47. Atkinson A, Winge DR (2009) Metal acquisition and availability in the mitochondria. Chem Rev 109(10):4708–4721

    Article  CAS  Google Scholar 

  48. Liu Y, He L, Mustapha A et al (2009) Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157: H7. J Appl Microbiol 107(4):1193–1201

    Article  CAS  Google Scholar 

  49. He L, Liu Y, Mustapha A et al (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166(3):207–215

    Article  CAS  Google Scholar 

  50. Hosseinkhani P, Zand AM, Imani S et al (2011) Determining the antibacterial effect of ZnO nanoparticle against the pathogenic bacterium, Shigella dysenteriae (type 1). Int J Nano Dimens 1:279–285

    CAS  Google Scholar 

  51. Zinjarde SS (2012) Bio-inspired nanomaterials and their applications as antimicrobial agents. Chronicles Young Sci 3(1):74

    Article  CAS  Google Scholar 

  52. Egger S, Lehmann RP, Height MJ et al (2009) Antimicrobial properties of a novel silver-silica nanocomposite material. Appl Environ Microbiol 75(9):2973–2976

    Article  CAS  Google Scholar 

  53. Allahverdiyev AM, Abamor ES, Bagirova M et al (2011) Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug-resistant bacteria and leishmania parasites. Future Microbiol 6(8):933–940

    Article  CAS  Google Scholar 

  54. Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93(10):1037–1043

    Article  CAS  Google Scholar 

  55. Lok CN, Ho CM, Chen R et al (2007) Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 12(4):527–534

    Article  CAS  Google Scholar 

  56. Yun H, Kim JD, Choi HC et al (2013) Antibacterial activity of CNT-Ag and GO-Ag nanocomposites against Gram-negative and Gram-positive bacteria. Bull Kor Chem Soc 34(11):3261–3264

    Article  CAS  Google Scholar 

  57. Iavicoli I, Fontana L, Leso V et al (2013) The effects of nanomaterials as endocrine disruptors. Int J Mol Sci 14(8):16732–16801

    Article  Google Scholar 

  58. Mie R, Samsudin MW, Din LB et al (2014) Synthesis of silver nanoparticles with antibacterial activity using the lichen Parmotrema praesorediosum. Int J Nanomedicine 9:121

    Google Scholar 

  59. Choi O, Deng KK, Kim NJ et al (2008) The inhibitory effects of silver NPs, silver ions, and silver chloride colloids on microbial growth. Water Res 42(12):3066–3074

    Article  CAS  Google Scholar 

  60. Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L et al (2010) Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnol 8(1):1

    Article  Google Scholar 

  61. Takeshima T, Tada Y, Sakaguchi N et al (2015) DNA/Ag nanoparticles as antibacterial agents against Gram-negative bacteria. Nanomaterials 5(1):284–297. https://doi.org/10.3390/nano5010284

    Article  CAS  Google Scholar 

  62. Dagmar C, Kristyna C, Pavel K et al (2015) Antimicrobial nanomaterials in the food industry. Kvasny Prum 61(2):51–56

    Article  Google Scholar 

  63. Wu HQ, Wei XW, Shao MW et al (2002) Synthesis of copper oxide nanoparticles using carbon nanotubes as templates. Chem Phys Lett 364(1–2):152–156

    Article  CAS  Google Scholar 

  64. Usman MS, El Zowalaty ME, Shameli K et al (2013) Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int J Nanomedicine 8:4467

    Google Scholar 

  65. Ahamed M, Alhadlaq HA, Khan MA et al (2014) Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles. J Nanomater 637858:1–4. https://doi.org/10.1155/2014/637858

    Article  CAS  Google Scholar 

  66. Yoon KY, Byeon JH, Park JH et al (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373(2–3):572–575

    Article  CAS  Google Scholar 

  67. Mahapatra O, Bhagat M, Gopalakrishnan C et al (2008) Ultrafine dispersed CuO nanoparticles and their antibacterial activity. J Exp Nanosci 3(3):185–193

    Article  CAS  Google Scholar 

  68. Ramyadevi J, Jeyasubramanian K, Marikani A et al (2012) Synthesis and antimicrobial activity of copper nanoparticles. Mater Lett 71:114–116

    Article  CAS  Google Scholar 

  69. Lima E, Guerra R, Lara V et al (2013) Gold nanoparticles as efficient antimicrobial agents for Escherichia coli and Salmonella typhi. Chem Cent J 7(1):11

    Article  CAS  Google Scholar 

  70. Tiwari PM, Vig K, Dennis VA et al (2011) Functionalized gold nanoparticles and their biomedical applications. Nanomaterials 1(1):31–63

    Article  CAS  Google Scholar 

  71. Zhou Y, Kong Y, Kundu S et al (2012) Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guérin. J Nanobiotechnol 10(1):19. https://doi.org/10.1186/1477-3155-10-19

    Article  CAS  Google Scholar 

  72. Lokina S, Narayanan V (2013) Antimicrobial and anticancer activity of gold nanoparticles synthesized from grapes fruit extract. Chem Sci Trans 2(S1):S105–S110

    Google Scholar 

  73. Cui Y, Zhao Y, Tian Y et al (2012) The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials 33(7):2327–2333

    Article  CAS  Google Scholar 

  74. Sametband M, Shukla S, Meningher T et al (2011) Effective multi-strain inhibition of influenza virus by anionic gold nanoparticles. MedChemComm 2(5):421–423

    Article  CAS  Google Scholar 

  75. Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle–cell interactions. Small 6(1):12–21

    Article  CAS  Google Scholar 

  76. Simpson CA, Huffman BJ, Gerdon AE et al (2010) Unexpected toxicity of monolayer protected gold clusters eliminated by PEG-thiol place exchange reactions. Chem Res Toxicol 23(10):1608–1616

    Article  CAS  Google Scholar 

  77. Zawrah MF, El-Moez SA, Center D (2011) Antimicrobial activities of gold nanoparticles against major foodborne pathogens. Life Sci J 8(4):37–44

    Google Scholar 

  78. Jayaseelan C, Ramkumar R, Rahuman AA et al (2013) Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind Crop Prod 45:423–429

    Article  CAS  Google Scholar 

  79. Dhapte V, Kadam S, Pokharkar V et al (2014) Versatile SiO2 NPs@polymer composites with pragmatic properties. Int Scholarly Res Notices 170919:1–8. https://doi.org/10.1155/2014/170919

    Article  CAS  Google Scholar 

  80. Cousins BG, Allison HE, Doherty PJ et al (2007) Effects of a nanoparticulate silica substrate on cell attachment of Candida albicans. J Appl Microbiol 102(3):757–765

    Article  CAS  Google Scholar 

  81. Kim YH, Lee DK, Cha HG et al (2007) Synthesis and characterization of antibacterial Ag−SiO2 nanocomposite. J Phys Chem C 111(9):3629–3635

    Article  CAS  Google Scholar 

  82. Li B, Logan BE (2004) Bacterial adhesion to glass and metal-oxide surfaces. Colloids Surf B: Biointerfaces 36(2):81–90

    Article  CAS  Google Scholar 

  83. Sadiq IM, Chowdhury B, Chandrasekaran N et al (2009) Antimicrobial sensitivity of Escherichia coli to alumina nanoparticles. Nanomed Nanotechnol Biol Med 5(3):282–286

    Article  CAS  Google Scholar 

  84. Martınez-Flores E, Negrete J, Villasenor GT (2003) Structure and properties of Zn–Al–Cu alloy reinforced with alumina particles. Mater Des 24(4):281–286

    Article  Google Scholar 

  85. Ruparelia JP, Chatterjee AK, Duttagupta SP et al (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4(3):707–716

    Article  CAS  Google Scholar 

  86. Auffan M, Rose J, Wiesner MR et al (2009) Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ Pollut 157(4):1127–1133

    Article  CAS  Google Scholar 

  87. Kim S, Choi JE, Choi J et al (2009) Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol In Vitro 23(6):1076–1084

    Article  CAS  Google Scholar 

  88. Wiwanitkit V, Sereemaspun A, Rojanathanes R (2009) Effect of gold nanoparticle on the microscopic morphology of white blood cell. Cytopathology 20(2):109–110

    Article  CAS  Google Scholar 

  89. Prabhu BM, Ali SF, Murdock RC et al (2010) Copper nanoparticles exert size and concentration dependent toxicity on somatosensory neurons of rat. Nanotoxicology 4(2):150–160

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Islam, S. et al. (2021). Nanomaterials and Nanocoatings for Alternative Antimicrobial Therapy. In: Kharissova, O.V., Martínez, L.M.T., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-11155-7_3-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11155-7_3-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11155-7

  • Online ISBN: 978-3-030-11155-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics