Skip to main content

Development of Glass Ceramics from Agricultural Wastes

  • Living reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications

Abstract

Glass and ceramics have become an indispensable part of mankind, starting from home appliances to construction materials. Some common home appliance applications include the finest tableware, cook wares, and even many washing machines and driers. Glass ceramics are smart materials combining the properties of glass with the benefits of conventional sintered ceramics. “Glass ceramics” refers to a material that consists of one/more glass phases with one/more crystalline phases. These materials are typically manufactured, in a controlled nucleation and crystallization of any base glass. In brief, glass ceramic structure comprises an amorphous (glassy) phase with one/multiple embedded crystalline phases. The compositional variation of glass ceramics may design products of highly crystalline to more substantial glassy phase or transparent to opaque materials. To meet the specific requirements, compositional difference may be tuned to have material with zero thermal expansion, high toughness, resistance to thermal shock, and high impact resistance. According to the typical convention of base material, glass ceramics may be of either oxide based (silicate (SiO2), borate (B2O3), phosphate (P2O5), and germinate (GeO2)) or non-oxide based (chalcogenide, halide, and metallic). With wide variation of thermal and mechanical characteristics, glass has a broad range of applications like cooktops, toasters, clothes irons, grills, smartphone screens, infrared heating elements, high-temperature furnaces, biomedical engineering, and advanced optical devices. With the increasing demand of smart materials for life style, exploration of sustainable resources for providing raw materials for glass ceramic production has become a thrust area of research in the present context of smart product synthesis. This article aims to present a comprehensive account on glass ceramics, emphasizing agricultural waste as cheap resource material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Stookey SD (1959) Catalysed crystallization of glass in theory and practice. Ind Eng Chem 51(7):805–808

    CAS  Google Scholar 

  2. Holand W, Beall G (2002) Glass – ceramic technology, 2nd edn. The American Ceramic Society, Westerville, p 372

    Google Scholar 

  3. Daculsi G (2016) History of development and use of the bioceramics and biocomposites. In: Antoniac I (ed) Handbook of bioceramics and biocomposites. Springer, Cham, pp 1–20

    Google Scholar 

  4. Paul W, Sharma CP (2010) Inorganic nanoparticles for targeted drug delivery. In: Biointegration of medical implants materials, science and design. Woodhead Publishing series in biomaterials. Woodhead Publishing, Oxford, pp 204–235

    Google Scholar 

  5. Hench LL (1998) Bioceramics. J Am Ceram Soc 81(7):1705–1728

    CAS  Google Scholar 

  6. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J Biomed Mater Res 24(6): 721–734

    CAS  Google Scholar 

  7. De Santis R, Guarino V, Ambrosio L (2009) Composite biomaterials for bone repair. In: Planell JA, Best SM, Lacroix D (eds) Bone repair biomaterials. Woodhead Publishing in biomaterials. CRC Press, Boca Raton, pp 252–270

    Google Scholar 

  8. Bouajaj A, Belmokhtar S, Britel Normani S (2016) Tb3+/Yb3+ codoped silica hafnia glass and glass ceramic waveguides to improve the efficiency of photovoltaic solar cells. Opt Mater 52:62–68

    CAS  Google Scholar 

  9. Wang X-H, Deng XY, Bai H-L, Zhou H, Qu W-G (2006) Two step sintering of ceramics with constant grain size, II: BaTiO3 and Ni-Cu-Zn ferrite. J Am Ceram Soc 89(2):438–443

    CAS  Google Scholar 

  10. Zanotto ED (2010) A bright future for glass-ceramics. Am Ceram Soc Bull 89:19–27

    CAS  Google Scholar 

  11. Cornejo IA, Ramalingam S, Fish JS, Reimanis IE (2014) Hidden treasures: turning food waste into glass. Am Ceram Soc Bull 93(6):24–27

    CAS  Google Scholar 

  12. Lin CSK, Pfaltzgraff LA, Herrero-Davila L, Mubofu EB, Abderrahim S, Clark JH, Koutinas AA, Kopsahelias N, Stamatelatou K, Dickson F, Thankappan S, Mohamed Z, Brocklesby R, Luque R (2013) Food waste as a valuable resource for the production of chemicals, materials, and fuels. Current situation and global perspective. Energy Environ Sci 6:426–464

    CAS  Google Scholar 

  13. Lou XF, Nair J (2009) The impact of landfilling and composting on greenhouse gas emissions – a review. Bioresour Technol 100:3792–3798

    CAS  Google Scholar 

  14. Matori KA, Haslinawati MM (2009) Producing amorphous white silica from rice husk. J Basic Appl Sci 1(3):512–515

    Google Scholar 

  15. Adylov GT, Faiziev SA, Paizullakhanov MS (2003) Silicon carbide materials obtained from rice husk. Tech Phys Lett 29(3):221–223

    CAS  Google Scholar 

  16. Krishnaro RV, Godkhindi MM (1992) Distribution of silica in rice husk and its effect on formation of silicon carbide. Ceram Int 18:243–249

    Google Scholar 

  17. Maeda E, Komatsu M (1996) The thermoelectric performance of silicon carbide semiconductor made from rice hull. Mater Res Soc Symp Proc 410:77–82

    CAS  Google Scholar 

  18. Real C, Alcala MD, Criado JM (2004) Synthesis of silicon nitride from carbothermal reduction of rice husks by the constant-rate-thermal-analysis (CRTA) method. J Am Ceram Soc 87:75–78

    CAS  Google Scholar 

  19. Tuck CO, Perez E, Horvath IT, Sheldon RA, Poliakoff M (2012) Valorization of biomass: deriving more value from waste. Science 337:695–699

    CAS  Google Scholar 

  20. Azat S, Korobeinyk AV, Moustakas K, Inglezakis VJ (2019) Sustainable production of pure silica from rice husk waste in Kazakhstan. J Clean Prod 217:352–359

    CAS  Google Scholar 

  21. Permatasari N, Sucahya TN, Nandiyanto ABD (2016) Review: agricultural wastes as a source of silica material. Indones J Sci Technol 1(1):82–106

    Google Scholar 

  22. Hoeland W, Beall GH (eds) (2010) Glass-ceramic technology, 2nd edn. The American Ceramic Society/Wiley, New York

    Google Scholar 

  23. Peitl O, Zanotto ED, Hench LL (2001) Highly bioactive P2O5–Na2O–CaO–SiO2 glass-ceramics. J Non-Cryst Solids 292:115–126

    CAS  Google Scholar 

  24. Ley V, Krumpelt M, Kumar R, Meiser IJH (1996) Glass-ceramic sealants for solid oxide fuel cells: Part I. Physical properties bloom. J Mater Res 11:1489–1493

    CAS  Google Scholar 

  25. Tauon M, Panchapan S (2000) Development of rice-residue application in agriculture. J Acad Serv Cent Khon Kaen Univ 10:72–80

    Google Scholar 

  26. Alyosef HA, Eilert A, Welscher J, Ibrahim SS, Denecke R, Schwieger W, Enke D (2013) Characterization of biogenic silica generated by thermo chemical treatment of rice husk. Part Sci Technol 31:524–532

    CAS  Google Scholar 

  27. Rohatgi K, Prasad SV, Rohatgi PK (1987) Release of silica-rich particles from rice husk by microbial fermentation. J Mater Sci Lett 6(7):829–883

    CAS  Google Scholar 

  28. Bakar RA, Yahya R, Gan SN (2016) Production of high purity amorphous silica from rice husk. Procedia Chem 19:189–195

    Google Scholar 

  29. Chen SY, Chou PF, Chan WK, Lin HM (2017) Preparation and characterization of mesoporous bioactive glass from agricultural waste rice husk for targeted anticancer drug delivery. Ceram Int 43:2239–2245

    CAS  Google Scholar 

  30. Ratep A (2019) Preparation and characterization of silicate glasses from waste agriculture materials (rice husk and peanut peel). Silicon. https://doi.org/10.1007/s12633-019-00241-2

  31. Vaibhav V, Vijayalakshmi U, Mohana Roopan S (2015) Agricultural waste as a source for the production of silica nanoparticles. Spectrochim Acta A 139:515–520

    CAS  Google Scholar 

  32. Chakraverty A, Mishra P, Banerjee HD (1988) Investigation of combustion of raw and acid-leached rice husk for production of pure amorphous white silica. J Mater Sci 23:21–24

    CAS  Google Scholar 

  33. Della VP, Kuhn I, Hotza D (2002) Rice husk ash as an alternate source for active silica production. Mater Lett 57:818–821

    CAS  Google Scholar 

  34. Gu S, Zhou J, Luo Z, Wang Q, Ni M (2013) A detailed study of the effects of pyrolysis temperature and feedstock particle size on the preparation of nanosilica from rice husk. Ind Crop Prod 50:540–549

    CAS  Google Scholar 

  35. Kongmanklang C, Rangsriwatananon K (2015) Hydrothermal synthesis of high crystalline silicate from rice husk ash. J Spectrosc 2015:Article ID 696513, 1–5 pages. https://doi.org/10.1155/2015/696513

    Article  CAS  Google Scholar 

  36. Estevez M, Vargas S, Castano VM, Rodriguez R (2009) Silica nano-particles produced by worms through a bio-digestion process of rice husk. J Non-Cryst Solids 355(14):844–850

    CAS  Google Scholar 

  37. Zarib NSM, Abdullah S (2018) Effect of C6H8O7 concentration on silica extraction of rice husk, rice husk ash and mixture of rice husk with rice husk ash via acid leaching process. Int J Eng Technol 2:190–195

    Google Scholar 

  38. Riveros H, Garza C (1986) Rice husks as a source of high purity silica. J Cryst Growth 75(1):126–131

    CAS  Google Scholar 

  39. Jung DS, Ryou MH, Sung YJ, Park SB, Choi JW (2013) Recycling rice husks for high-capacity lithium battery anodes. Proc Natl Acad Sci USA 110(30):12229–12234

    CAS  Google Scholar 

  40. Rafiee E, Shahebrahimi S, Feyzi M, Shaterzadeh M (2012) Optimization of synthesis and characterization of nanosilica produced from rice husk (a common waste material). Int Nano Lett 2:29. https://doi.org/10.1186/2228-5326-2-29

    Article  Google Scholar 

  41. Fernandes IJ, Calheiro D, Sanchez FAL, Camacho ALD, de Campos Rocha TLA, Moraes CAM, de Sousa VC (2017) Characterization of silica produced from rice husk ash: comparison of purification and processing methods. Mater Res 20:512–518

    Google Scholar 

  42. Sharma G, Singh K (2019) Recycling and utilization of agro-food waste ashes: syntheses of the glasses for wide-band gap semiconductor applications. J Mater Cycles Waste Manag 21:801–809

    CAS  Google Scholar 

  43. Shi B, Shin YK, Hassanali AA, Singer SJ (2017) Biomolecules at the amorphous silica/water interface: binding and fluorescence anisotropy of peptides. Colloids Surf B Biointerfaces 157:83–92

    CAS  Google Scholar 

  44. Chen X, Hadde E, Liu S, Peng Y (2017) The effect of amorphous silica on pulp rheology and copper flotation. Miner Eng 113:41–46

    CAS  Google Scholar 

  45. Mitran RA, Matei C, Berger D, Băjenaru L, Moisescu MG (2018) Controlling drug release from mesoporous silica through an amorphous, nanoconfined 1-tetradecanol layer. Eur J Pharm Biopharm 127:318–325

    CAS  Google Scholar 

  46. Kumar S, Sangwan P, Dhankhar R, Mor V, Bidra S (2013) Utilization of rice husk and their ash: a review. J Chem Environ Sci 1:126–129

    CAS  Google Scholar 

  47. Prasad CS, Maiti KN, Venugopal R (2001) Effect of rice husk ash in white ware compositions. Ceram Int 27:629–635

    CAS  Google Scholar 

  48. Lakshmi UR, Srivastava VC, Mall ID, Lataye DH (2009) Rice husk ash as an effective adsorbent: evaluation of adsorptive characteristics for Indigo Carmine dye. J Environ Manag 90:710–720

    CAS  Google Scholar 

  49. Andreola F, Martín MI, Ferrari AM, Lancellotti I, Bondioli F, Ma Rincón J, Romero M, Barbieri L (2013) Technological properties of glass-ceramic tiles obtained using rice husk ash as silica precursor. Ceram Int 39:5427–5435

    CAS  Google Scholar 

  50. Laad M (2017) Extraction and characterization of silica from agro-waste for energy applications. In: International conference on energy, communication, data analytics and soft computing (ICECDS-2017)

    Google Scholar 

  51. Geetha D, Ananthiand A, Ramesh PS (2016) Preparation and characterization of silica material from rice husk ash – an economically viable method. Res Rev J Pure Appl Phys 4:20–26

    CAS  Google Scholar 

  52. Van Soest PJ (2006) Rice straw, the role of silica and treatments to improve quality. Anim Feed Sci Technol 130:137–171

    Google Scholar 

  53. Agbagla-Dohnani A, Nozière P, Clément G, Doreau M (2001) Chemical and morphological composition of 15 varieties of European rice straw. Anim Feed Sci Technol 94:15–27

    Google Scholar 

  54. Hessien MM, Rashad MM, Zaky RR, Abdel-Aal EA, El-Barawy KA (2009) Controlling the synthesis conditions for silica nanosphere from semi-burned rice straw. Mater Sci Eng B 162(1):14–21

    CAS  Google Scholar 

  55. Lu P, Hsieh Y-L (2012) Highly pure amorphous silica nano-disks from rice straw. Powder Technol 225:149–155

    CAS  Google Scholar 

  56. Wattanasiriwech S, Wattanasiriwech D, Svasti J (2010) Production of amorphous silica nanoparticles from rice straw with microbial hydrolysis pretreatment. J Non-Cryst Solids 356(25):1228–1232

    CAS  Google Scholar 

  57. Zaky RR, Hessien MM, El-Midany AA, Khedr MH, Abdel-Aal EA, El-Barawy KA (2008) Preparation of silica nanoparticles from semi-burned rice straw ash. Powder Technol 185(1):31–35

    CAS  Google Scholar 

  58. Khorsand H, Kiayee N, Masoomparast AH (2012) Rice straw ash- a novel source of silica nanoparticles. J Mech Res Appl 4(3):1–9

    Google Scholar 

  59. Kauldhar BS, Yadav SK (2018) Turning waste to wealth: a direct process for recovery of nano-silica and lignin from paddy straw agro-waste. J Clean Prod 194:158–166

    CAS  Google Scholar 

  60. Zhang QZ, Cai WM (2008) Enzymatic hydrolysis of alkali pre-treated rice straw by Trichoderma reesei ZM4-F3. Biomass Bioenergy 32:1130–1135

    CAS  Google Scholar 

  61. Haruta S, Cui Z, Huang Z, Li M, Ishii M, Igarashi Y (2002) Construction of a stable microbial community with high cellulose-degradation ability. Appl Microbiol Biotechnol 59:529–534

    CAS  Google Scholar 

  62. Zhang M, Wang F, Su R, Qi W, He Z (2010) Ethanol production from high dry matter corncob using fed-batch simultaneous saccharification and fermentation after combined pre-treatment. Bioresour Technol 101:4959–4964

    CAS  Google Scholar 

  63. Adesanya DA, Raheem AA (2009) Development of corn cob ash blended cements. Constr Build Mater 23:347–352

    Google Scholar 

  64. Velmurugan P, Shim J, Lee K-J, Cho M, Lim S-S, Seo S-K, Cho K-M, Bang K-S, Oh B-T (2015) A extraction, characterization, and catalytic potential of amorphous silica from corn cobs by sol-gel method. J Ind Eng Chem 29:298–303

    CAS  Google Scholar 

  65. Adigun BO, Jegede FI, Sanya OT (2020) Advanced materials development from corncob ash for economic sustainability. Ceram Eng Sci 2:17–21

    Google Scholar 

  66. Shim J, Velmurugan P, Oh B-T (2015) Extraction and physical characterization of amorphous silica made from corn cob ash at variable pH conditions via sol gel processing. J Ind Eng Chem 30:249–253

    CAS  Google Scholar 

  67. Owoeye SS, Oji B, Aderiye J (2015) Effect of temperature, time and atmospheric condition on active silica extraction from corn cob ash. Int J Eng Technol Innov 2(3):1–5

    Google Scholar 

  68. Teixeira SR, Souza AE, Santos GTA, Peña AFV, Miguel AG (2008) Sugarcane bagasse ash as a potential quartz replacement in red ceramic. J Am Ceram Soc 91:1883–1887

    CAS  Google Scholar 

  69. Teixeira SR, Peña AFV, Miguel AG (2010a) Briquetting of charcoal from sugar-cane bagasse fly ash (SCBFA) as an alternative fuel. Waste Manag 30:804–807

    CAS  Google Scholar 

  70. Teixeira SR, Romero M, Rincón JM (2010b) Crystallization of SiO2–CaO–Na2O glass using sugarcane bagasse ash as silica source. J Am Ceram Soc 93:450–455

    CAS  Google Scholar 

  71. Teixeira SR, Romero M, Rincón JM, Magalhães RS, Souza AE, Santos GTA, Silva RA (2011) Glass-ceramic material from the SiO2–Al2–CaO system using sugar-cane bagasse ash (SCBA). IOP Conf Ser Mater Sci Eng 18:112020

    Google Scholar 

  72. Teixeira SR, Magalhães RS, Arenales A, Souza AE, Romero M, Rincón JM (2014) Valorization of sugarcane bagasse ash: producing glass-ceramic materials. J Environ Manag 134:15–19

    CAS  Google Scholar 

  73. Amin N-U, Khattak S, Noor S, Ferroze I (2016) Synthesis and characterization of silica from bottom ash of sugar industry. J Clean Prod 117:207–211

    Google Scholar 

  74. Sapawe N, Osman NS, Zakaria MZ, Shahab SA, Fikry SM, Aris MAM (2018) Synthesis of green silica from agricultural waste by sol-gel method. Mater Today Proc 5:21861–21866

    CAS  Google Scholar 

  75. Imoisili PE, Ukoba KO, Jen T-C (2019) Synthesis and characterization of amorphous mesoporous silica from palm kernel shell ash. Bol Soc Esp Cerám Vidrio. https://doi.org/10.1016/j.bsecv.2019.09.006

  76. Mittal D (1997) Silica from ash a valuable product from waste material. Resonance 2(7):64–66

    CAS  Google Scholar 

  77. Yin CY, Kadir SASA, Lim YP, Ariffin SNS, Zamzuri Z (2008) An investigation into physicochemical characteristics of ash produced from combustion of oil palm biomass wastein a boiler. Fuel Process Technol 89:693–696

    Google Scholar 

  78. Faizul CP, Abdullah C, Fazlul B (2013) Extraction of silica from palm ash via citric acid leeching treatment. Adv Environ Biol 7:3690–3695

    CAS  Google Scholar 

  79. Anuar MF, Fena YW, Zaid MHM, Matoria KA, Khaidir REM (2018) Synthesis and structural properties of coconut husk as potential silica source. Results Phys 11:1–4

    Google Scholar 

  80. Terzioğlu P, Yücel S, Kuş C (2019) Review on a novel biosilica source for production of advanced silica-based materials: wheat husk. Asia Pac J Chem Eng 14:e2262

    Google Scholar 

  81. Moheb A, Grondin M, Ibrahim RK, Roy R, Sarhan F (2013) Winter wheat hull (husk) is a valuable source for tricin, a potential selective cytotoxic agent. Food Chem 138:931–937

    CAS  Google Scholar 

  82. Terzioglu P, Yucel S, Rababah T, Özçimen D (2013) Characterization of wheat hull and wheat hull ash as a potential source of SiO2. Bioresources 8(3):4406–4420

    Google Scholar 

  83. Javed SH, Shah FH, Mansha M (2011) Extraction of amorphous silica from wheat husk by KMnO4. J Eng Technol 18:39–46

    Google Scholar 

  84. Cui J, Sun H, Luo Z, Sun J, Wen Z (2015) Preparation of low surface area SiO2 microsphere from wheat husk ash with a facile precipitation process. Mater Lett 156:42–45

    CAS  Google Scholar 

  85. Liu SW, Wei Q, Cui SP, Nie ZR, Du MH, Li QY (2016) Hydrophobic silica aerogel derived from wheat husk ash by ambient pressure drying. J Sol-Gel Sci Technol 78(1):60–67

    CAS  Google Scholar 

  86. Naddaf M, Kafa H, Ghanem I (2019) Extraction and characterization of nano-silica from olive stones. Silicon. https://doi.org/10.1007/s12633-019-00112-w

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Das, R., Bhattacharjee, C. (2020). Development of Glass Ceramics from Agricultural Wastes. In: Kharissova, O.V., Martínez, L.M.T., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-11155-7_134-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11155-7_134-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11155-7

  • Online ISBN: 978-3-030-11155-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics