Skip to main content

Gravity Methods, Satellite

Encyclopedia of Solid Earth Geophysics

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 36 Accesses

Abstract

After recalling the need for measuring the Earth’s gravity field at fine spatial scale and high precision with respect to applications in the geosciences, we broadly review the classical ways of determining global gravity models. We then describe the new satellite gravity missions with their basic principles and finally give our vision of the future in this domain.

Details in a gravity model recovery (functional representation, dynamical approach, inverse problem of celestial mechanics, disturbing forces, etc.) and in the principles of satellite-to-satellite tracking and satellite gradiometry (and instruments) are to be found in other chapters of this encyclopedia. Broad concepts only and most important mathematical methods are given here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Bibliography

  • Balmino G, Reigber C, Moynot B (1976a) A geopotential model determined from recent satellite observation campaigns (GRIM1). Manuscr Geodaet 1:41–69. Berlin

    Google Scholar 

  • Balmino G, Reigber C, Moynot B (1976b) The GRIM2 Earth Gravity Field. Deutsche Geodätische Kommission, Reihe A, Heft Nr. 86, München

    Google Scholar 

  • Bettadpur S, Ries J, Eanes R, Nagel P, Pie N, Poole S, Richter T, Save H (2015) Evaluation of the GGM05 mean earth gravity models. Geophysical research abstracts, vol 17, EGU2015-4153, Vienna

    Google Scholar 

  • Biancale R, Balmino G, Lemoine J-M, Marty J-C, Moynot B, Barlier F, Exertier P, Laurain O, Gegout P, Schwintzer P, Reigber C, Bode A, Gruber T, König R, Massmann F-H, Raimondo JC, Schmidt R, Zhu SY (2000) A new global Earth’s gravity field model from satellite orbit perturbations: GRIM5-S1. Geophys Res Lett 27(22):3611–3614

    Article  Google Scholar 

  • Bruinsma SL, Forste C, Abrikosov O, Marty JC, Rio MH, Mulet S, Bonvalot S (2013) The new ESA satellite-only gravity field model via the direct approach. Geophys Res Lett 40(14):3607–3612. https://doi.org/10.1002/grl.50716

    Article  Google Scholar 

  • Douch D, Wu H, Schubert C, Müller J, Pereira Dos Santos F (2018) Simulation-based evaluation of a cold atom interferometry gradiometer concept for gravity field recovery. Adv Space Res 61(5):1307–1323

    Article  Google Scholar 

  • ESA (European Space Agency) (1999) Gravity field and steady-state ocean circulation explorer mission (GOCE). ESA-SP 1233(1):1–217

    Google Scholar 

  • Förste C, Bruinsma SL (2016) EIGEN-6S4: A time-variable satellite-only gravity field model to d/o 300 based on LAGEOS, GRACE and GOCE data from the collaboration of GFZ Potsdam and GRGS Toulouse. https://doi.org/10.5880/icgem.2016.004

  • Gaposchkin EM (1973) Smithonian standard earth (III). Special report no. 353, Smithonian Astrophysical Observatory, Cambridge, MA

    Google Scholar 

  • Gaposchkin EM, Lambeck K (1970) 1969 Smithonian standard earth (II). Special report no. 315, Smithonian Astrophysical Observatory, Cambridge, MA

    Google Scholar 

  • Han S-C, Shum CK, Jekeli C, Kuo C-Y, Wilson CR, Seo K-W (2005) Non-isotropic filtering of GRACE temporal gravity for geophysical signal enhancement. Geophys J Int 163:18–25

    Article  Google Scholar 

  • IERS (International Earth Rotation Service) (2010) IERS conventions (2010). IERS technical note 36, Frankfurt

    Google Scholar 

  • Jekeli C (1981) Alternative methods to smooth the Earth’s gravity field. Report no. 327, Department of Geodetic Science, Ohio State University

    Google Scholar 

  • JPL (Jet propulsion Laboratory) (1998) GRACE: gravity recovery and climate experiment. Science and Mission requirements document, revision A, JPLD-15928, NASA’s Earth System Science Pathfinder Program, pp 1–84

    Google Scholar 

  • Kusche J (2007) Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models. J Geod 81:733–749

    Article  Google Scholar 

  • Lerch FJ, Wagner CA, Smith DE, Sandson ML, Brownd JE, Richardson JA (1972a) Gravitational field models for the earth (GEM1&2). Report X55372146, Goddard Space Flight Center, Greenbelt

    Google Scholar 

  • Lerch FJ, Wagner CA, Putney ML, Sandson ML, Brownd JE, Richardson JA, Taylor WA (1972b) Gravitational field models GEM3 and 4. Report X59272476, Goddard Space Flight Center, Greenbelt

    Google Scholar 

  • Lerch FJ, Wagner CA, Richardson JA, Brownd JE (1974) Goddard earth models (5 and 6). Report X92174145, Goddard Space Flight Center, Greenbelt

    Google Scholar 

  • Lerch FJ, Klosko SM, Laubscher RE, Wagner CA (1979) Gravity model improvement using Geos3 (GEM9 and 10). J Geophys Res 84(B8):3897–3916

    Article  Google Scholar 

  • Lu B, Luo Z, Zhong B, Zhou H, Flechtner F, Förste C, Barthelmes F, Zhou R (2018) The gravity field model IGGT_R1 based on the second invariant of the GOCE gravitational gradient tensor. J Geod 92(5):561–572

    Article  Google Scholar 

  • Lundquist CA, Veis G (1966) Geodetic parameters for a 1966 Smithsonian institution standard earth. Special report no. 200, Smithonian Astrophysical Observatory, Cambridge, MA

    Google Scholar 

  • Marchenko AN, Marchenko AD, Lopushansky AN (2016) Gravity field models derived from the second degree radial derivatives of the GOCE Mission: a case study. Ann Geophys 59(6):649–659

    Google Scholar 

  • Marsh JG, Lerch FJ, Putney BH, Christodoulidis DC, Smith DE, Felsentreger TL, Sanchez BV, Klosko SM, Pavlis EC, Martin TV, Robbins JW, Williamson RG, Colombo OL, Rowlands DD, Eddy WF, Chandler NL, Rachlin KE, Patel GB, Bhati S, Chinn DS (1988) A new gravitational model for the earth from satellite tracking data: GEMT1. J Geophys Res 93(B6):6169–6215

    Article  Google Scholar 

  • Mayer-Gürr, and 24 co-authors (2015) The new combined satellite only model GOCO05s. Abstract. EGU General Assembly, Vienna

    Google Scholar 

  • Mayer-Gürr T, Eicker A, Ilk KH (2006) ITG-GRACE02s: a GRACE gravity field derived from short arcs of the satellite’s orbit. In: Proceedings of the first symposium of international gravity field service, Istanbul

    Google Scholar 

  • Mayer-Gürr T, Kurtenbach E, Eicker A (2010) ITG-Grace2010 gravity field model. http://www.igg.uni-bonn.de/apmg/index.php?id=itg-grace2010

  • Meyer U, Sosnica K, Arnold D, Dahle C, Thaller D, Dach R, Jäggi A (2019) SLR, GRACE and SWARM gravity field determination and combination. Remote Sens 11:956. https://doi.org/10.3390/rs11080956

    Article  Google Scholar 

  • Nerem RS (1995) Terrestrial and planetary gravity fields. Rev Geophys 33(suppl):469–476

    Article  Google Scholar 

  • Nerem RS, Lerch FJ, Marshall JA, Pavlis EC, Putney BH, Tapley BD, Eanses RJ, Ries JC, Schutz BE, Shum CK, Watkins MM, Klosko SM, Chan JC, Luthcke SB, Patel GB, Pavlis NK, Williamson RG, Rapp RH, Biancale R, Nouel F (1994) Gravity model developments for Topex/Poseidon: joint gravity models 1 and 2. J Geophys Res 99(C12):24421–24447

    Article  Google Scholar 

  • Reigber C, Balmino G, Moynot B, Müller H (1983) The GRIM3 earth gravity field model. Manuscr Geodaet 8:93–138. Stuttgart

    Google Scholar 

  • Reigber C, Bock R, Forste C, Grunwaldt L, Jakowski N, Lühr H, Schwintzer P, Tilgner C (1996) CHAMP Phase B executive summary. G.F.Z., STR96/13, pp 1–37

    Google Scholar 

  • Reigber C, Balmino G, Schwintzer P, Biancale R, Bode A, Lemoine J-M, König R, Loyer S, Neumayer H, Marty J-C, Barthelmes F, Perosanz F, Zhu SY (2002) A high quality global gravity field model from CHAMP GPS tracking data and Accelerometry (EIGEN-1S). Geophys Res Lett 29(14). https://doi.org/10.1029/2002GL015064

  • Reigber C, Balmino G, Schwintzer P, Biancale R, Bode A, Lemoine J-M, König R, Loyer S, Neumayer H, Marty J-C, Barthelmes F, Perosanz F, Zhu SY (2003a) Global gravity field recovery using solely GPS tracking and accelerometer data from CHAMP. Space Sci Rev 29:55–66

    Article  Google Scholar 

  • Reigber C, Schwintzer P, Neumayer K-H, Barthelmes F, König R, Förste C, Balmino G, Biancale R, Lemoine J-M, Loyer S, Bruinsma S, Perosanz F, Fayard T (2003b) The CHAMP-only earth gravity field model EIGEN-2. Adv Space Res 31(8):1883–1888. https://doi.org/10.1016/S0273-1177(03)00162-5

    Article  Google Scholar 

  • Reigber C, Schmidt R, Flechtner F, König R, Meyer U, Neumayer KH, Schwintzer P, Zhu SY (2003c) First EIGEN gravity field model based on GRACE mission data only. http://op.gfz-potsdam.de/grace/results/grav/g001_eigen-grace01s.html

  • Reigber C, Schmidt R, Flechtner F, König R, Meyer U, Neumayer KH, Schwintzer P, Zhu SY (2005) An earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S. J Geodyn 39:1–10

    Article  Google Scholar 

  • Schuh W-D (2003) The processing of band-limited measurements – filtering techniques in the least squares context and in the presence of data gaps. In: Beutler G, Drinkwater MR, Rummel R, von Steiger R (Hrsg) Earth gravity field from space – from sensors to earth sciences, workshop, Bern, 11–15 Mar 2002. Space science reviews. ISSI, pp 67–78

    Google Scholar 

  • Schwintzer P, Reigber C, Bode A, Kang Z, Zhu SY, Massmann FH, Raimondo JC, Biancale R, Balmino G, Lemoine JM, Moynot B, Marty JC, Barlier F, Boudon Y (1997) Long wavelength global gravity field models: GRIM4S4, GRIM4C4. J Geod 71(4):189–208

    Article  Google Scholar 

  • Siemes C (2008) Digital filtering algorithm for decorrelation within large least squares problems. PhD Dissertation, Institut für Geodäsie und Geoinformation der Universität Bonn

    Google Scholar 

  • Tapley B, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Poole S (2007) The GGM03 mean earth gravity model from GRACE. Eos Trans AGU 88(52). Fall Meet. Suppl., Abstract G42A-03

    Google Scholar 

  • Wagner CA, Lerch FJ, Brownd JE, Richardson JE (1976) Improvement in the geopotential derived from satellite and surface data – GEM 7 and GEM 8. Report X9217620, Greenbelt

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Balmino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Balmino, G. (2020). Gravity Methods, Satellite. In: Gupta, H. (eds) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-030-10475-7_94-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10475-7_94-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10475-7

  • Online ISBN: 978-3-030-10475-7

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Gravity Method, Satellite
    Published:
    08 September 2020

    DOI: https://doi.org/10.1007/978-3-030-10475-7_94-2

  2. Original

    Gravity Methods, Satellite
    Published:
    14 February 2020

    DOI: https://doi.org/10.1007/978-3-030-10475-7_94-1