Skip to main content

Positive Solutions of Real Homogeneous Algebraic Inequalities

  • Conference paper
  • First Online:
Smart Modeling for Engineering Systems (GCM50 2018)

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 133))

Abstract

We show a simple and explicit reduction of the problem of the existence of positive solution of a system of real algebraic homogeneous inequalities in \( R_{ + }^{n} \) to solvability of a standard concave programming problem, which in turn is equivalent to checking whether a particular constraint of a finite system of convex inequalities is redundant. We illustrate this result on two well-known problems in mathematical economics: the weak separability problem and the collective consumption behavior for the homogeneous utilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kondrakov, I., Pospelova, L., Shananin, A.: Generalized nonparametric method. Applications to the analysis of commodity markets. Proc. MIPT. 2, 32–45 (2010)

    Google Scholar 

  2. Petrov, A., Shananin, A.: Integrability conditions, income distribution, and social structures. In: Tangyan, A., Gruber, J. (eds.) Constructing Scalar-valued Utility Functions. LNEMS. vol. 453, pp. 271–288. Springer (1998)

    Google Scholar 

  3. Klemashev, N., Shananin, A.: Inverse problems of demand analysis and their applications to computation of positively-homogeneous Konus–Divisia indices and forecasting. J. Inverse Ill-Posed Prob. 24(4) (2015). https://doi.org/10.1515/jiip-2015-0015

  4. Afriat, S.: The construction of utility functions from expenditure data. Int. Econ. Rev. 8(1), 66–77 (1967)

    Article  Google Scholar 

  5. Varian, H.R.: Non-parametric tests of consumer behaviour. Rev. Econ. Stud. 60(1), 99–110 (1983)

    Article  Google Scholar 

  6. Blackorby, C., Primont, D., Russel, R.: Duality, Separability, and Functional Structure: Theory and Economic Application. North-Holland, Amsterdam (1979)

    Google Scholar 

  7. Cherchye, L., Demuynk, T., De Rock, B., Hjertstrand, P.: Revealed preference tests for weak separability: an integer programming approach. J. Econom. 186(1), 129–141 (2015)

    Article  MathSciNet  Google Scholar 

  8. Fleissig, A., Whitney, G.A.: A nonparametric test of weak separability and consumer preferences. J. Econom. 147(2), 275–281 (2008)

    Article  MathSciNet  Google Scholar 

  9. Swofford, J.L., Whitney, G.A.: A revealed preference test for weakly separable utility maximization with incomplete adjustment. J. Econom. 60(1–2), 235–249 (1994)

    Article  MathSciNet  Google Scholar 

  10. Echenique, F.: Testing for separability is hard. arXiv:1401.4499 [ cs.GT]

  11. Chiappori, P.: Rational household labor supply. Econometrica 56(1), 63–90 (1988)

    Article  MathSciNet  Google Scholar 

  12. Talla Nobibon, F., Cherchye, L., Crama, F., Demuynk, T., De Rock, B., Spieksma, F.: Revealed preference tests of collectively rational consumption behavior: formulations and algorithms. Oper. Res. 64(6), 1197–1216 (2016)

    Article  MathSciNet  Google Scholar 

  13. Smeulders, B., Cherchye, L., De Rock, B., Spieksma, F.C.R., Talla Nobibon, F.: Complexity results for the weak axiom of revealed preference for collective consumption models. J. Math. Econ. 58, 82–91 (2010)

    Article  MathSciNet  Google Scholar 

  14. Talla Nobibon, F., Spieksma, F.: On the complexity of testing the collective axiom of revealed preference. Math. Soc. Sci. 60(2), 123–136 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author is partially supported by Russian Foundation for Basic Research, project No. 17-51-150001. The second author is partially supported by Russian Foundation for Basic Research, project No. 17-0700300.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Tarasov .

Editor information

Editors and Affiliations

Appendix

Appendix

Proposition 1

The complete PH-separability holds if and only if the system of (4)–(6) is consistent.

Proof

At first, recall that Euler’s homogeneous function theorem can be reformulated as follows for the case of PH well-behaved functions \( f\left( \cdot \right):R_{ + }^{n} \to R_{ + } \). If \( x_{0} \in R_{ + }^{n} \) and \( p \in \partial f\left( {x_{0} } \right) \), i.e. p belongs to a supergradient set of \( f\left( \cdot \right) \) at x0, then \( px_{0} = f\left( {x_{0} } \right) \). Indeed, it follows from concavity of \( f\left( \cdot \right) \) that the inequality \( f\left( x \right) - f\left( {x_{0} } \right) \ge p\left( {x - x_{0} } \right) \) holds for all \( x \in R_{ + }^{n} \). Let \( x =\uplambda\,x_{0} ,\;\uplambda > 0 \). As \( f\left( \cdot \right) \) is positive homogeneous, then for all positive λ it holds that \( \left( {\uplambda - 1} \right)f\left( {x_{0} } \right) \geq \left( {\uplambda - 1} \right)px_{0} \), hence, \( px_{0} = f\left( {x_{0} } \right) \).

Necessity. Assume that statistics is complete PH-separable. By definition it means that there exists a pair of a well-behaved PH functions \( u_{0} \left( {q,z} \right) \) and \( u_{1} \left( y \right) \) such that

$$ \left( {q^{t} ,y^{t} } \right) \in {\text{Arg}}\;\hbox{max} \left\{ { u_{1} \left( {q,u_{1} \left( y \right)} \right) \left| { p^{t} q} \right. + x^{t} y \le p^{t} q^{t} + x^{t} y^{t} ,\;\;q \ge 0,\;\;y \ge 0} \right\} ,\quad t = 1, \ldots ,T. $$
(11)

As PH well-behaved functions are monotonic, then it follows from (11) that

$$ \left( {q^{t} } \right) \in {\text{Arg}}\;\hbox{max} \left\{ { u_{1} \left( y \right) \left| { x^{t} y \le x^{t} y^{t} } \right.,\;y \ge 0} \right\} ,\quad t = 1, \ldots ,T. $$

Define the Young transforms:

$$ v_{0} \left( {p,s} \right)\mathop = \limits^{\text{def}} \mathop {\inf }\limits_{{\left\{ {q \ge o,z \ge 0\left| {u_{0} \left( {q,z} \right)} \right. > 0} \right\}}} \frac{pq + sz}{{u_{0} \left( {q,z} \right)}},\;\;\;\;\;\;v_{1} \left( x \right)\mathop = \limits^{\text{def}} \mathop {\inf }\limits_{{\left\{ {y \ge o\left| {u_{1} \left( y \right)} \right. > 0} \right\}}} \frac{xy}{{u_{1} \left( y \right)}}. $$

By definition it holds

$$ \begin{aligned} & v_{1} \left( {x^{t} } \right) u_{1} \left( {y^{t} } \right) = x^{t} y^{t} , \\ & v_{1} \left( {x^{\uptau} } \right) u_{1} \left( {y^{t} } \right) \le x^{\uptau} y^{t} , \\ & v_{0} \left( {p^{t} ,v_{1} \left( {x^{t} } \right)} \right) u_{0} \left( {q^{t} ,u_{1} \left( {y^{t} } \right)} \right) = p^{t} q^{t} + v_{1} \left( {x^{t} } \right) u_{1} \left( {y^{t} } \right), \\ & v_{0} \left( {p^{\uptau} ,v_{1} \left( {x^{\uptau} } \right)} \right) u_{0} \left( {q^{t} ,u_{1} \left( {y^{t} } \right)} \right) \le p^{\uptau} q^{t} + v_{1} \left( {x^{\uptau} } \right) u_{1} \left( {y^{t} } \right), \\ & t,\uptau = 1, \ldots ,T. \\ \end{aligned} $$

Now necessity follows as \( \uplambda_{t} = \frac{1}{{v_{1} \left( {x^{t} } \right)}},\;\;\upmu_{t} = \frac{1}{{v_{0} \left( {p^{t} ,v_{1} \left( {x^{t} } \right)} \right)}},\;\;t = 1, \ldots ,T \) are solutions of the system of (4)–(6).

Sufficiency. Set \( u_{1} \left( y \right)\mathop = \limits^{\text{def}} \hbox{min} \left( {\uplambda_{t} x^{t} y\left| {t = 1, \ldots ,T} \right.} \right) \). By homogeneous Afriat’s theorem it holds \( \left( {y^{t} } \right) \in {\text{Arg}}\;\hbox{max} \left\{ { u_{1} \left( y \right) \left| { x^{t} y \le x^{t} y^{t} } \right.,\;\;y \ge 0} \right\} ,\;\;t = 1, \ldots ,T \).

Set \( u_{0} \left( {q,z} \right)\mathop = \limits^{\text{def}} \hbox{min} \left( {\upmu_{t} \left( {p^{t} q + \frac{1}{{\uplambda_{t} }}z} \right)\left| {t = 1, \ldots ,T} \right.} \right) \).

Let \( q \ge 0,\;\;y \ge 0,\;\;p^{t} q + x^{t} y \le p^{t} q^{t} + x^{t} y^{t} \). Then it holds

$$ \begin{aligned} & p^{t} q^{t} + x^{t} y^{t} = p^{t} q^{t} + \frac{1}{{\uplambda_{t} }}u_{1} \left( {y^{t} } \right) = \frac{1}{{\upmu_{t} }}u_{0} \left( {q^{t} ,u_{1} \left( {y^{t} } \right)} \right), \\ & x^{t} y \geq \frac{1}{{\uplambda_{t} }}u_{1} \left( y \right),\;\;\;p^{t} q + x^{t} y \ge p^{t} q + \frac{1}{{\uplambda_{t} }}u_{1} \left( y \right) \ge \frac{1}{{\upmu_{t} }}u_{0} \left( {q,u_{1} \left( y \right)} \right). \\ \end{aligned} $$

And it follows that \( u_{0} \left( {q^{t} ,u_{1} \left( {y^{t} } \right)} \right) \ge u_{0} \left( {q,u_{1} \left( y \right)} \right) \) and, thus, (11) holds.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shananin, A., Tarasov, S. (2019). Positive Solutions of Real Homogeneous Algebraic Inequalities. In: Petrov, I., Favorskaya, A., Favorskaya, M., Simakov, S., Jain, L. (eds) Smart Modeling for Engineering Systems. GCM50 2018. Smart Innovation, Systems and Technologies, vol 133. Springer, Cham. https://doi.org/10.1007/978-3-030-06228-6_4

Download citation

Publish with us

Policies and ethics