Skip to main content

Fitting Dense and Sparse Reduced Data

  • Conference paper
  • First Online:
Advances in Soft and Hard Computing (ACS 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 889))

Included in the following conference series:

Abstract

This paper addresses the topic of fitting reduced data represented by the sequence of interpolation points \(\mathcal{M}=\{q_i\}_{i=0}^n\) in arbitrary Euclidean space \(\mathbb {E}^m\). The parametric curve \(\gamma \) together with its knots \(\mathcal{T}=\{t_i\}_{i=0}^n\) (for which \(\gamma (t_i)=q_i\)) are both assumed to be unknown. We look at some recipes to estimate \(\mathcal{T}\) in the context of dense versus sparse \(\mathcal{M}\) for various choices of interpolation schemes \(\hat{\gamma }\). For \(\mathcal{M}\) dense, the convergence rate to approximate \(\gamma \) with \(\hat{\gamma }\) is considered as a possible criterion to force a proper choice of new knots \(\hat{\mathcal{T}}=\{\hat{t}_i\}_{i=0}^n \approx \mathcal{T}\). The latter incorporates the so-called exponential parameterization “retrieving” the missing knots \(\mathcal{T}\) from the geometrical spread of \(\mathcal{M}\). We examine the convergence rate in approximating \(\gamma \) by commonly used interpolants \(\hat{\gamma }\) based here on \(\mathcal{M}\) and exponential parameterization. In contrast, for \(\mathcal{M}\) sparse, a possible optional strategy is to select \(\hat{\mathcal{T}}\) which optimizes a certain cost function depending on the family of admissible knots \(\hat{\mathcal{T}}\). This paper focuses on minimizing “an average acceleration” within the family of natural splines \(\hat{\gamma }=\hat{\gamma }^{NS}\) fitting \(\mathcal{M}\) with \(\hat{\mathcal{T}}\) admitted freely in the ascending order. Illustrative examples and some applications listed supplement theoretical component of this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Engelwood Cliffs (1976)

    MATH  Google Scholar 

  2. de Boor, C.: A Practical Guide to Spline. Springer, Heidelberg (1985)

    Google Scholar 

  3. Kozera, R.: Curve modeling via interpolation based on multidimensional reduced data. Studia Informatica 25(4B(61)), 1–140 (2004)

    Google Scholar 

  4. Noakes, L., Kozera, R.: Cumulative chords piecewise-quadratics and piecewise-cubics. In: Klette, R., Kozera, R., Noakes, L., Wieckert, J. (eds.) Geometric Properties from Incomplete Data, Computational Imaging and Vision, vol. 31, pp. 59–75. Kluver Academic Publisher (2006)

    Google Scholar 

  5. Epstein, M.P.: On the influence of parameterization in parametric interpolation. SIAM J. Numer. Anal. 13, 261–268 (1976)

    Article  MathSciNet  Google Scholar 

  6. Kozera, R., Noakes, L.: Asymptotics for length and trajectory from cumulative chord piecewise-quartics. Fund. Inform. 61(3–4), 267–283 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Kozera, R., Noakes, L.: Piecewise-quadratics and exponential parameterization for reduced data. Appl. Math. Comput. 221, 620–638 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Kozera, R., Wilkołazka, M.: Convergence order in trajectory estimation by piecewise cubics and exponential parameterization. Math. Model. Anal. (in press)

    Google Scholar 

  9. Kozera, R., Noakes, L.: Piecewise-quadratics and \(\varepsilon \)-uniformly sampled reduced data. Appl. Math. Inf. Sci. 10(1), 33–48 (2016)

    Google Scholar 

  10. Floater, M.S.: Chordal cubic spline interpolation is fourth order accurate. IMA J. Numer. Anal. 26(1), 25–33 (2005)

    Article  MathSciNet  Google Scholar 

  11. Kozera, R., Noakes, L.: Piecewise-quadratics and reparameterizations for interpolating reduced data. In: 17th International Workshop on Computer Algebra in Scientific Computing. LNCS, vol. 9301, pp. 260–274. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24021-3_20

  12. Lee, E.T.Y.: Choosing nodes in parametric curve interpolation. Comput. Aided Geom. Des. 21(6), 363–370 (1989)

    Article  Google Scholar 

  13. Kozera, R., Noakes, L.: \(C^1\) interpolation with cumulative chord cubics. Fund. Inform. 61(3–4), 285–301 (2004)

    Google Scholar 

  14. Kozera, R., Wilkołazka, M.: A modfied Hermite interpolation and exponential parameterization. Math. Comput. Sci. (2018). https://doi.org/10.1007/s11786-018-0362-4

  15. Kozera, R., Noakes, L., Wilkołazka, M.: A modified complete spline interpolation and exponential parameterization. In: 14th International Conference on Computer Information Systems and Industrial Management. LNCS, vol. 9339, pp. 98–110. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24369-6_8

  16. Mørken, K., Scherer, K.: A general framework for high-accuracy parametric interpolation. Math. Comput. 66(217), 237–260 (1997)

    Article  MathSciNet  Google Scholar 

  17. Rababah, A.: High order approximation methods for curves. Comput. Aided Geom. Des. 12(1), 89–102 (1995)

    Article  MathSciNet  Google Scholar 

  18. Kocić, L.J.M., Simoncelli, A.C., Della, V.B.: Blending parameterization of polynomial and spline interpolants. Facta Univ. Ser. Math. Inform. 5, 95–107 (1990)

    MATH  Google Scholar 

  19. Kozera, R., Noakes, L., Wilkołazka, M.: A natural spline interpolation and exponential parameterization. In: Proceedings of American Institute of Physics, vol. 1738, pp. 180003-1–183003-4. AIP Publishing (2016). https://doi.org/10.1063/1.4992579

  20. Noakes, L., Kozera, R.: More-or-less uniform samplings and lengths of curves. Q. Appl. Math. Des. 61(3), 475–483 (2003)

    Article  MathSciNet  Google Scholar 

  21. Kozera, R., Noakes, L.: Interpolating sporadic data. In: 7th European Conference on Computer Vision. LNCS, vol. 2351/II, pp. 613–625. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47967-8_41

  22. Kozera, R., Noakes, L.: Optimal knots selection for sparse reduced data. In Workshops of 7th Pacific-Rim Symposium on Image and Video Technology. LNCS, vol. 9555, pp. 3–14. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30285-0_1

  23. Kozera, R., Noakes, L.: Modelling reduced sparse data. In: Photonics Applications in Astronomy, Communications, Industry and High Energy Physics Experiments, vol. 10031, pp. 100314V-1–100314V-8. SPIE Proceedings (2016). https://doi.org/10.1117/12.2249260

  24. Kozera, R., Noakes, L.: Non-linearity and non-convexity in optimal knots selection for sparse reduced data. In: 19th International Workshop on Computer Algebra in Scientific Computing. LNCS, vol. 10490, pp. 257–271. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66320-3_19

  25. Kozera, R., Noakes, L.: Natural cubic splines and and optimal knots selection for sparse reduced data. Submitted

    Google Scholar 

  26. Kuznetsov, E.B., Yakimovich, A.Y.: The best parameterization for parametric interpolation. J. Appl. Math. 191, 239–245 (2006)

    MathSciNet  MATH  Google Scholar 

  27. Kvasov, B.I.: Methods of Shape-Preserving Spline Approximation. World Scientific Publishing Company, Singapore (2000)

    Book  Google Scholar 

  28. Piegl, L., Tiller, W.: The NURBS Book. Springer, Heidelberg (1997)

    Book  Google Scholar 

  29. Farin, G.: Curves and Surfaces for Computer Aided Geometric Design. Academic Press, San Diego (1993)

    MATH  Google Scholar 

  30. Janik, M., Kozera, R., Kozioł, P.: Reduced data for curve modeling - applications in graphics, computer vision and physics. Adv. Sci. Technol. 7(18), 28–35 (2013)

    Google Scholar 

  31. Rogers, D.F., Adams, J.A.: Mathematical Elements for Computer Graphics. McGraw-Hill, New York (1976)

    Google Scholar 

  32. Wolfram, S.: The Mathematica Book, 5th. edn. Wolfram Media (2003)

    Google Scholar 

  33. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  34. Leal, M.M., Raydan, M.: Newton’s method and secant methods: a longstanding relationship from vector to matrices. Port. Math. 68(4), 431–475 (2011)

    MathSciNet  MATH  Google Scholar 

  35. Ralston, A.: A First Course in Numerical Analysis. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryszard Kozera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kozera, R., Wiliński, A. (2019). Fitting Dense and Sparse Reduced Data. In: Pejaś, J., El Fray, I., Hyla, T., Kacprzyk, J. (eds) Advances in Soft and Hard Computing. ACS 2018. Advances in Intelligent Systems and Computing, vol 889. Springer, Cham. https://doi.org/10.1007/978-3-030-03314-9_1

Download citation

Publish with us

Policies and ethics