Skip to main content

Dynamical Rearrangement of Symmetry and Robustness in Physics and Biology

  • Chapter
  • First Online:
Biological Robustness

Part of the book series: History, Philosophy and Theory of the Life Sciences ((HPTL,volume 23))

  • 286 Accesses

Abstract

The mechanism of the dynamical rearrangement of symmetry in quantum field theory underlies the phenomenon of coherent boson condensation in the vacuum state. Coherent states appear to be related to fractal self-similarity. The dynamical paradigm of coherence opens the way to an integrated vision of natural phenomena and it may possibly rule morphogenetic processes. Robustness properties of physical systems, such as dynamical and functional robustness, topological robustness, multilevel and semantic robustness may find their root in coherence. Possible extension to biology and neuroscience is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The word morphogenesis is thus defined by specific mathematical QFT quantities. Its relation with other definitions or uses, in a qualitative or quantitative way, in other disciplines is not object of discussion here. The comparison among different definitions in different context does not belong to the task of this paper and therefore I will not discuss it.

  2. 2.

    These conclusions hold also when a gauge field (e.g. in electrodynamics, in the electro-weak interaction of the standard model and in the quantum chromodynamics) is present. In such a case the condensation of NG bosons still characterizes the ground state and its robustness properties. The NG bosons do not belong to the spectrum of observable particles and the gauge field, which acquires a non-vanishing mass , is confined to self-focusing channels (the so called Anderson-Higgs-Kibble mechanism) (Itzykson and Zuber 1980; Umezawa 1993; Blasone et al. 2011). Such a self-focusing of the gauge field propagation is another manifestation of the robustness of the system in recovering the original dynamical invariance.

  3. 3.

    Such an observation has led to a possible mathematical formulation, within the Chomsky Generative Grammar approach, of the formation of concepts out of syntactic elements in linguistics (Piattelli-Palmarini and Vitiello 2015).

  4. 4.

    An illustrative example of topological charge is the one of the kink solution in one-dimensional nonlinear dynamics. The kink is characterized by the hyperbolic tangent tgh x, whose limits at x → ±∞ are ±1, respectively, so that the topological charge Q is in this case defined by Q = ½(tgh x |+∞ – tgh x|-∞) = 1. In the case of a vortex solution the topological charge is given by the number of “turns” around the vortex core and is called the winding number.

  5. 5.

    Quotation marks in the original text.

  6. 6.

    Quotation marks in the original text.

References

  • Anderson, P. W. (1984). Notions of condensed matter physics. Menlo Park: Benjamin.

    Google Scholar 

  • Atmanspacher, H. (2015). Quantum approaches to consciousness. Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/entries/qt-consciousness/

  • Auletta, G., Fortunato, M., & Parisi, G. (2009). Quantum mechanics. Cambridge: Cambridge Univ. Press.

    Book  Google Scholar 

  • Basti, G., Capolupo, A., & Vitiello, G. (2017). Quantum field theory and coalgebraic logic in theoretical computer science. Progress in Biophysics and Molecular Biology, 130 A, 39–52 arXiv:1701.00527v1 [quant-ph].

    Article  Google Scholar 

  • Blasone, M., Jizba, P., & Vitiello, G. (2011). Quantum field theory and its macroscopic manifestations. London: Imperial College Press.

    Book  Google Scholar 

  • Bogoliubov, N., Logunov, A. A., & Todorov, I. T. (1975). Introduction to axiomatic quantum field theory. Reading: W. A. Benjamin, Advanced Book Program.

    Google Scholar 

  • Caianiello, S., & Bertolaso, M. (2016). Robustness as organized heterogeneity. Rivista di filosofia Neo-scolastica, 2, 293–303.

    Google Scholar 

  • Capolupo, A., Freeman, W. J., & Vitiello, G. (2013). Dissipation of ‘dark energy’ by cortex in knowledge retrieval. Physics of Life Reviews, 10, 85–94.

    Article  Google Scholar 

  • Capolupo, A., Del Giudice, E., Elia, V., Germano, R., Napoli, E., Niccoli, M., Tedeschi, A., & Vitiello, G. (2014). Self-similarity properties of nafionized and filtered water and deformed coherent states. International Journal of Modern Physics B, 28, 1450007 20 pages.

    Article  Google Scholar 

  • Celeghini, E., Rasetti, M., & Vitiello, G. (1992). Quantum dissipation. Annals of Physics, 215, 156–170.

    Article  Google Scholar 

  • Celeghini, E., De Martino, S., De Siena, S., Iorio, A., Rasetti, M., & Vitiello, G. (1998). Thermo field dynamics and quantum algebras. Physics Letters A, 244, 455–461.

    Article  Google Scholar 

  • Chen, Y. S., Choi, W., Papanikolaou, S., & Sethna, J. P. (2010). Bending crystals: Emergence of fractal dislocation structures. Physical Review Letters, 105, 105501.

    Article  Google Scholar 

  • De Lauro, E., De Martino, S., Falanga, M., & Ixaru, L. G. (2009). Limit cycles in nonlinear excitation of clusters of classical oscillators. Computer Phys. Comm., 180, 1832–1838.

    Article  Google Scholar 

  • Del Giudice, E., & Vitiello, G. (2006). The role of the electromagnetic field in the formation of domains in the process of symmetry breaking phase transitions. Physical Review A, 74, 022105.

    Article  Google Scholar 

  • Del Giudice, E., Doglia, S., Milani, M., & Vitiello, G. (1983). Spontaneous symmetry breakdown and boson condensation in biology. Physics Letters A, 95, 508–510.

    Article  Google Scholar 

  • Del Giudice, E., Doglia, S., Milani, M., & Vitiello, G. (1985). A quantum field theoretical approach to the collective behavior of biological systems. Nuclear Physics B, 251(FS 13), 375–400.

    Article  Google Scholar 

  • Del Giudice, E., Doglia, S., Milani, M., & Vitiello, G. (1986). Electromagnetic field and spontaneous symmetry breaking in biological matter. Nuclear Physics B, 275(FS 17), 185–199.

    Article  Google Scholar 

  • Del Giudice, E., Preparata, G., & Vitiello, G. (1988a). Water as a free electric dipole laser. Physical Review Letters, 61, 1085–1088.

    Article  Google Scholar 

  • Del Giudice, E., Manka, R., Milani, M., & Vitiello, G. (1988b). Non-constant order parameter and vacuum evolution. Physics Letters, 206B, 661–664.

    Article  Google Scholar 

  • Freeman, W.J. (1975/2004). Mass action in the nervous system. New York: Academic.

    Google Scholar 

  • Freeman, W. J. (1991). The physiology of perception. Scientific American, 264, 78–85.

    Article  Google Scholar 

  • Freeman, W.J. (2014). Review of the book by K. H. Pribram, The form within: My point of view. Westport: Prospecta Press. 2013.

    Google Scholar 

  • Freeman, W. J., & Quian Quiroga, R. (2013). Imaging brain function with EEG. New York: Springer.

    Book  Google Scholar 

  • Freeman, W. J., & Vitiello, G. (2006). Nonlinear brain dynamics as macroscopic manifestation of underlying many-body dynamics. Physics of Life Reviews, 3, 93–118.

    Article  Google Scholar 

  • Freeman, W. J., & Vitiello, G. (2016). Matter and mind are entangled in two streams of images guiding behavior and informing the subject through awareness. Mind & Matter, 14(1), 7–24.

    Google Scholar 

  • Freeman, W. J., Livi, R., Obinata, M., & Vitiello, G. (2012). Cortical phase transitions, non-equilibrium thermodynamics and the time-dependent Ginzburg-landau equation. International Journal of Modern Physics B, 26, 1250035.

    Article  Google Scholar 

  • Gramsci, A. (1932). Quaderni del carcere. Quad. N. 10, 1932–35, V. Gerratana (Ed.), Einaudi, Torino 1977, p. 1263 (The open Marxism of Antonio Gramsci. Translated and annotated by C. Marzani, Cameron Associates, New York 1957).

    Google Scholar 

  • Hilborn, R. (1994). Chaos and nonlinear dynamics. Oxford: Oxford University Press.

    Google Scholar 

  • Itzykson, C., & Zuber, J. (1980). Quantum field theory. New York: McGraw-Hill.

    Google Scholar 

  • Kozma, R., & Freeman, W. J. (2016). Cognitive phase transitions in the cerebral cortex – Enhancing the neuron doctrine by modeling neural fields. Cham: Springer.

    Book  Google Scholar 

  • Kurian, P., Capolupo, A., Craddock, T. J. A., & Vitiello, G. (2016). Water-mediated correlations in DNA-enzyme interactios. Physics Letters A, 382(1), 33–43 arXiv:1608.08097.

    Article  Google Scholar 

  • Loppini, A., Capolupo, A., Cherubini, C., Gizzi, A., Bertolaso, M., Filippi, S., & Vitiello, G. (2014). On the coherent behavior of pancreatic beta cell clusters. Physics Letters A, 378, 3210–3217.

    Article  Google Scholar 

  • Montagnier, L., Aissa, J., Del Giudice, E., Lavallee, C., Tedeschi, A., & Vitiello, G. (2011). DNA waves and water. Journal of Physics: Conference Series, 306, 012007.

    Google Scholar 

  • Montagnier, L., Del Giudice, E., Aïssa, J., Lavallee, C., Motschwiller, S., Capolupo, A., Polcari, A., Romano, P., Tedeschi, A., & Vitiello, G. (2015). Transduction of DNA information through water and electromagnetic waves. Electromagnetic Biology and Medicine, 34, 106–112.

    Article  Google Scholar 

  • Montagnier, L., Aïssa, J., Capolupo, A., Craddock, T. J. A., Kurian, P., Lavallee, C., Polcari, A., Romano, P., Tedeschi, A., & Vitiello, G. (2017). Water bridging dynamics of polymerase chain reaction in the gauge theory paradigm of quantum fields. Water, 9(5), 339 Addendum, Water, 9(6), 436.

    Article  Google Scholar 

  • Peitgen, H. O., Jürgens, H., & Saupe, D. (1986). Chaos and fractals. New frontiers of science. Berlin: Springer.

    Google Scholar 

  • Perelomov, A. (1986). Generalized coherent states and their applications. Berlin: Springer.

    Book  Google Scholar 

  • Pessa, E., & Vitiello, G. (2003). Quantum noise, entanglement and chaos in the quantum field theory of mind/brain states. Mind and Matter, 1, 59–79 arXiv:q-bio.OT/0309009.

    Google Scholar 

  • Pessa, E., & Vitiello, G. (2004). Quantum noise induced entanglement and chaos in the dissipative quantum model of brain. International Journal of Modern Physics B, 18, 841–858.

    Article  Google Scholar 

  • Piattelli-Palmarini, M., & Vitiello, G. (2015). Linguistics and some aspects of its underlying dynamics. Biolinguistics, 9, 96–115.

    Google Scholar 

  • Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B., & Erlich, H. A. (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 239, 487–491.

    Article  Google Scholar 

  • Schrödinger, E. (1944). What is life? Cambridge: Cambridge University Press (1967 reprint).

    Google Scholar 

  • Schweber, S. S. (1961). An introduction to relativistic quantum field theory. New York: Harper and Row.

    Google Scholar 

  • Umezawa, H. (1993). Advanced field theory: Micro, macro and thermal concepts. New York: AIP.

    Google Scholar 

  • Umezawa, H., Matsumoto, H., & Tachiki, M. (1982). Thermo field dynamics and condensed states. Amsterdam: North-Holland Pub. Co.

    Google Scholar 

  • Vitiello, G. (1995). Dissipation and memory capacity in the quantum brain model. International Journal of Modern Physics B, 9, 973–989.

    Article  Google Scholar 

  • Vitiello, G. (1998). Structure and function. An open letter to Patricia Churchland. In S. R. Hameroff, A. W. Kaszniak, & A. C. Scott (Eds.), Toward a science of consciousness II (pp. 231–236). Cambridge: MIT Press.

    Google Scholar 

  • Vitiello, G. (2001). My double unveiled. Amsterdam: John Benjamins Publ. Co.

    Book  Google Scholar 

  • Vitiello, G. (2004a). Classical chaotic trajectories in quantum field theory. International Journal of Modern Physics B, 18, 785–792.

    Article  Google Scholar 

  • Vitiello, G. (2004b). The dissipative brain. In G. Globus, K. H. Pribram, & G. Vitiello (Eds.), Brain and Being. At the boundary between science, philosophy, language and arts (pp. 315–334). Amsterdam: John Benjamins Publ..

    Google Scholar 

  • Vitiello, G. (2009). Coherent states, fractals and brain waves. New Mathematics and Natural Computation, 5, 245–264.

    Article  Google Scholar 

  • Vitiello, G. (2012). Fractals, coherent states and self-similarity induced noncommutative geometry. Physics Letters A, 376, 2527–2532.

    Article  Google Scholar 

  • Vitiello, G. (2014). On the isomorphism between dissipative systems, fractal self-similarity and electrodynamics. Toward an integrated vision of nature. Systems, 2, 203–216.

    Article  Google Scholar 

  • Vitiello, G. (2015). The use of many-body physics and thermodynamics to describe the dynamics of rhythmic generators in sensory cortices engaged in memory and learning. Current Opinion in Neurobiology, 31, 7–12.

    Article  Google Scholar 

  • Vitiello, G. (2016). (2016). Filling the gap between neuronal activity and macroscopic functional brain behavior. In R. Kozma & W. J. Freeman (Eds.), Cognitive phase transitions in the cerebral cortex – Enhancing the neuron doctrine by modeling neural fields (pp. 239–249). Cham: Springer.

    Chapter  Google Scholar 

Download references

Acknowledgments

I thank the anonymous referee and the Editors of this volume for their suggestions and help. Of course, the responsibility of statements and positions presented in this paper is only mine. I am glad to dedicate this work to the memory of Walter J. Freeman in the occasion of one year since his departure and to celebrate the wisdom of Antonio Gramsci on the 80th year since his tragic death.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Vitiello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vitiello, G. (2018). Dynamical Rearrangement of Symmetry and Robustness in Physics and Biology. In: Bertolaso, M., Caianiello, S., Serrelli, E. (eds) Biological Robustness. History, Philosophy and Theory of the Life Sciences, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-01198-7_12

Download citation

Publish with us

Policies and ethics