Skip to main content

Measurement of Phospholipid Metabolism in Intact Neutrophils

  • Protocol
  • First Online:
Neutrophil Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1124))

  • 6321 Accesses

Abstract

Phospholipid-metabolizing enzymes are important participants in neutrophil signal transduction pathways. The methods discussed herein describe assays for assessing the activities of phospholipase A2 (PLA2), phospholipase C (PLC), phospholipase D (PLD), and phosphoinositide 3-OH-kinase in intact neutrophils. PLA2 activity is measured as the release of radiolabeled arachidonic acid. PLC activity is measured as the accumulation of inositol 1,4,5-trisphosphate (IP3), a water-soluble product, using a commercially available radioreceptor assay kit. PLD activity is measured as the appearance of its radiolabeled products, phosphatidic acid and phosphatidylethanol. PI3-K activity is measured as the appearance of its radiolabeled product, phosphatidylinositol-3,4,5-trisphosphate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vadakekalam J, Metz S (1998) Isotopic efflux studies as indices of phospholipase activation. In: Bird IM (ed) Phospholipid Signaling Protocols. Humana Press, Totowa, NJ, pp 175–185

    Chapter  Google Scholar 

  2. Mueller HW, O’Flaherty JT, Greene DG et al (1984) 1-O-alkyl-linked glycerophospholipids of human neutrophils: distribution of arachidonate and other acyl residues in the ether-linked and diacyl species. J Lipid Res 25:383–388

    CAS  PubMed  Google Scholar 

  3. Solodkin-Szaingurten I, Levy R, Hadad N (2007) Differential behavior of sPLA2-V and sPLA2-X in human neutrophils. Biochim Biophys Acta Mol Cell Biol Lipids 1771:155–163

    Article  CAS  Google Scholar 

  4. Bauldry SA, Wooten RE (1996) Leukotriene B4 and platelet activating factor production in permeabilized human neutrophils: Role of cytosolic PLA2 in LTB4 and PAF generation. Biochim Biophys Acta Lipids Lipid Metab 1303:63–73

    Article  Google Scholar 

  5. Ayilavarapu S, Kantarci A, Fredman G et al (2010) Diabetes-induced oxidative stress is mediated by Ca2+-independent phospholipase A2 in neutrophils. J Immunol 184:1507–1515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Ambruso DR, Ellison MA, Thurman GW et al (2012) Peroxiredoxin 6 translocates to the plasma membrane during neutrophil activation and is required for optimal NADPH oxidase activity. Biochim Biophys Acta Mol Cell Res 1823:306–315

    Article  CAS  Google Scholar 

  7. Cockcroft S, Stutchfield J (1989) The receptors for ATP and fMetLeuPhe are independently coupled to phospholipases C and A2 via G-protein(s). Relationship between phospholipase C and A2 activation and exocytosis in HL60 cells and human neutrophils. Biochem J 263:715–723

    CAS  PubMed  Google Scholar 

  8. Bauldry SA, Wykle RL, Bass DA (1988) Phospholipase A2 activation in human neutrophils. Differential actions of diacylglycerols and alkylacylglycerols in priming cells for stimulation by N-formyl-Met-Leu-Phe. J Biol Chem 263:16787–16795

    CAS  PubMed  Google Scholar 

  9. Suire S, Lecureuil C, Anderson KE et al (2012) GPCR activation of Ras and PI3Kγ in neutrophils depends on PLCβ2/β3 and the RasGEF RasGRP4. EMBO J 31:3118–3129

    Article  CAS  PubMed  Google Scholar 

  10. Jakus Z, Simon E, Frommhold D et al (2009) Critical role of phospholipase Cβ2 in integrin and Fc receptor-mediated neutrophil functions and the effector phase of autoimmune arthritis. J Exp Med 206:577–593

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Di VF, Vicentini LM, Treves S et al (1985) Inositol phosphate formation in fMet-Leu-Phe-stimulated human neutrophils does not require an increase in the cytosolic free Ca2+ concentration. Biochem J 229:361–367

    Google Scholar 

  12. Ferretti ME, Nalli M, Biondi C et al (2001) Modulation of neutrophil phospholipase C activity and cyclic AMP levels by fMLP-OMe analogues. Cell Signal 13:233–240

    Article  CAS  PubMed  Google Scholar 

  13. Skippen A, Swigart P, Cockcroft S (2012) Measurement of phospholipase C by monitoring inositol phosphates using [3H]inositol labeling protocols in permeabilized cells. In: Lambert DG, Rainbow RD (eds) Calcium Signaling Protocols. Humana Press, Totowa, NJ, pp 163–174

    Google Scholar 

  14. Berridge MJ, Dawson RM, Downes CP et al (1983) Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem J 212:473–482

    CAS  PubMed  Google Scholar 

  15. Ali WH, Chen Q, Delgiorno KE et al (2013) Deficiencies of the lipid-signaling enzymes phospholipase D1 and D2 alter cytoskeletal organization, macrophage phagocytosis, and cytokine-stimulated neutrophil recruitment. PLoS ONE 8:e55325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Norton LJ, Zhang Q, Saqib KM et al (2011) PLD1 rather than PLD2 regulates phorbol-ester-, adhesion-dependent and Fcγ-receptor-stimulated ROS production in neutrophils. J Cell Sci 124:1973–1983

    Article  CAS  PubMed  Google Scholar 

  17. Agwu DE, McPhail LC, Wykle RL et al (1989) Mass determination of receptor-mediated accumulation of phosphatidate and diglycerides in human neutrophils measured by Coomassie blue staining and densitometry. Biochem Biophys Res Commun 159:79–86

    Article  CAS  PubMed  Google Scholar 

  18. Wakelam MJO, Powner DJ, Pettitt TR (2008) Determination of phospholipase D, lysophospholipase D and DG kinase signaling pathways in disease states by mass spectrometry. Adv Enzyme Regul 48:254–260

    Article  CAS  PubMed  Google Scholar 

  19. Agwu DE, McPhail LC, Chabot MC et al (1989) Choline-linked phosphoglycerides. A source of phosphatidic acid and diglycerides in stimulated neutrophils. J Biol Chem 264:1405–1413

    CAS  PubMed  Google Scholar 

  20. Bauldry SA, Elsey KL, Bass DA (1992) Activation of NADPH oxidase and phospholipase D in permeabilized human neutrophils. Correlation between oxidase activation and phosphatidic acid production. J Biol Chem 267:25141–25152

    CAS  PubMed  Google Scholar 

  21. Pai JK, Liebl EC, Tettenborn CS et al (1987) 12-O-Tetradecanoylphorbol-13-acetate activates the synthesis of phosphatidylethanol in animal cells exposed to ethanol. Carcinogenesis 8:173–178

    Article  CAS  PubMed  Google Scholar 

  22. Hu T, Exton JH (2005) 1-Butanol interferes with phospholipase D1 and protein kinase Cα association and inhibits phospholipase D1 basal activity. Biochem Biophys Res Commun 327:1047–1051

    Article  CAS  PubMed  Google Scholar 

  23. Pedruzzi E, Hakim J, Giroud JP et al (1998) Analysis of choline and phosphorylcholine content in human neutrophils stimulated by f-Met-Leu-Phe and phorbol myristate acetate—contribution of phospholipase D and C. Cell Signal 10:481–489

    Article  CAS  PubMed  Google Scholar 

  24. Wymann MP, Sozzani S, Altruda F et al (2000) Lipids on the move: phosphoinositide 3-kinases in leukocyte function. Immunol Today 21:260–264

    Article  CAS  PubMed  Google Scholar 

  25. Hawkins P, Stephens L, Suire S et al (2011) PI3K signaling in neutrophils. Curr Top Microbiol Immunol 346:183–202

    Google Scholar 

  26. Endemann G, Yonezawa K, Roth RA (1990) Phosphatidylinositol kinase or an associated protein is a substrate for the insulin receptor tyrosine kinase. J Biol Chem 265:396–400

    CAS  PubMed  Google Scholar 

  27. Ding J, Vlahos CJ, Liu R et al (1995) Antagonists of phosphatidylinositol 3-kinase block activation of several novel protein kinases in neutrophils. J Biol Chem 270:11684–11691

    Article  CAS  PubMed  Google Scholar 

  28. Naccache PH, Levasseur S, Lachance G et al (2000) Stimulation of human neutrophils by chemotactic factors is associated with the activation of phosphatidylinositol 3-kinase gamma. J Biol Chem 275:23636–23641

    Article  CAS  PubMed  Google Scholar 

  29. Wakelam MJO, Clark J (2011) Methods for analyzing phosphoinositides using mass spectrometry. Biochim Biophys Acta Mol Cell Biol Lipids 1811:758–762

    Article  CAS  Google Scholar 

  30. van der Kaay J, Cullen PJ, Downes CP (1998) Phosphatidylinositol(3,4,5)trisphosphate (Ptdins(3,4,5)P3) mass measurement using a radioligand displacement assay. In: Bird IM (ed) Phospholipid Signaling Protocols. Humana Press, Totowa, NJ, pp 109–125

    Chapter  Google Scholar 

  31. van der Kaay J, Batty IH, Cross DAE et al (1997) A novel, rapid, and highly sensitive mass assay for phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and its application to measure insulin-stimulated PtdIns(3,4,5)P3 production in rat skeletal muscle in vivo. J Biol Chem 272:5477–5481

    Article  PubMed  Google Scholar 

  32. Cadwallader KA, Condliffe AM, McGregor A et al (2002) Regulation of phosphatidylinositol 3-kinase activity and phosphatidylinositol 3,4,5-trisphosphate accumulation by neutrophil priming agents. J Immunol 169:3336–3344

    CAS  PubMed  Google Scholar 

  33. Traynor-Kaplan AE, Thompson BL, Harris AL et al (1989) Transient increase in phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol trisphosphate during activation of human neutrophils. J Biol Chem 264:15668–15673

    CAS  PubMed  Google Scholar 

  34. Cockcroft S (1991) Relationship between arachidonate release and exocytosis in permeabilized human neutrophils stimulated with formylmethionyl-leucyl-phenylalanine (fMetLeuPhe), guanosine 5′-[gamma-thio]triphosphate (GTP[S]) and Ca2+. Biochem J 275:127–131

    CAS  PubMed  Google Scholar 

  35. Briand SI, Bernier SG, Guillemette G (1998) Monitoring of phospholipase A2 activation in cultured cells using tritiated arachidonic acid. In: Bird IM (ed) Phospholipid signaling protocols. Humana Press, Totowa, NJ, pp 161–166

    Chapter  Google Scholar 

  36. Anderson R, Steel HC, Tintinger GR (2005) Inositol 1,4,5-triphosphate-mediated shuttling between intracellular stores and the cytosol contributes to the sustained elevation in cytosolic calcium in FMLP-activated human neutrophils. Biochem Pharmacol 69:1567–1575

    Article  CAS  PubMed  Google Scholar 

  37. Zhang L (1998) Inositol 1,4,5-trisphosphate mass assay. In: Bird IM (ed) Phospholipid signaling protocols. Humana Press, Totowa, NJ, pp 77–87

    Chapter  Google Scholar 

  38. Fruman DA, Gamache DA, Ernest MJ (1991) Changes in inositol 1,4,5-trisphosphate mass in agonist-stimulated human neutrophils. Agents Actions 34:16–19

    Article  CAS  PubMed  Google Scholar 

  39. Heilmann I, Perera IY (2013) Measurement of inositol (1,4,5) trisphosphate in plant tissues by a competitive receptor binding assay. In: Munnik T, Heilmann I (eds) Plant Lipid Signaling Protocols. Humana Press, Totowa, NJ, pp 33–41

    Chapter  Google Scholar 

  40. Arun SN, Xie D, Howard AC et al (2013) Cell wounding activates phospholipase D in primary mouse keratinocytes. J Lipid Res 54:581–591

    Article  CAS  PubMed  Google Scholar 

  41. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  42. Thompson NT, Bonser RW, Tateson JE et al (1991) A quantitative investigation into the dependence of Ca2+ mobilisation on changes in inositol 1,4,5-trisphosphate levels in the stimulated neutrophil. Br J Pharmacol 103:1592–1596

    Article  CAS  PubMed  Google Scholar 

  43. Sergeant S, McPhail LC (2007) Measurement of phospholipid metabolism in intact neutrophils. Methods Mol Biol 412:69–83

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Development of the phospholipase D assay was partially supported by National Institutes of Health grant R01 AI-22564 to L.C.M.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sergeant, S., McPhail, L.C. (2014). Measurement of Phospholipid Metabolism in Intact Neutrophils. In: Quinn, M., DeLeo, F. (eds) Neutrophil Methods and Protocols. Methods in Molecular Biology, vol 1124. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-845-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-845-4_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-844-7

  • Online ISBN: 978-1-62703-845-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics