Skip to main content

Characterizing Millisecond Intermediates in Hemoproteins Using Rapid-Freeze-Quench Resonance Raman Spectroscopy

  • Protocol
  • First Online:
Metalloproteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1122))

Abstract

The combination of rapid freeze quenching (RFQ) with resonance Raman (RR) spectroscopy represents a unique tool with which to investigate the nature of short-lived intermediates formed during the enzymatic reactions of metalloproteins. Commercially available equipment allows trapping of intermediates within a millisecond to second time scale for low-temperature RR analysis resulting in the direct detection of metal–ligand vibrations and porphyrin skeletal vibrations in hemoproteins. This chapter briefly discusses RFQ-RR studies carried out previously in our laboratory and presents, as a practical example, protocols for the preparation of RFQ samples of the reaction of metmyoglobin with nitric oxide (NO) under anaerobic conditions. Also described are important controls and practical procedures for the analysis of these samples by low-temperature RR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ballou DP, Palmer GA (1974) Practical rapid quenching instrument for the study of reaction mechanisms by electron paramagnetic resonance spectroscopy. Anal Chem 46:1248–1253

    Article  CAS  Google Scholar 

  2. Bray RC (1961) Sudden freezing as a technique for the study of rapid reactions. Biochem J 81:189–193

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Witt RK, Kemp JD (1937) The heat capacity of ethane from 15 K to the boiling point. The heat of fusion and the heat of vaporization. J Am Chem Soc 59:273–276

    Article  CAS  Google Scholar 

  4. Guthrie GB, Huffman HM (1943) Thermal data. XVI. The heat capacity and entropy of isopentane. The absence of a reported anomaly. J Am Chem Soc 65:1139–1143

    Article  CAS  Google Scholar 

  5. Schmidt B, Mahmud G, Soh S, Kim SH, Page T, O'Halloran TV, Grzybowski BA, Hoffman BM (2011) Design implementation, simulation, and visualization of a highly efficient RIM microfluidic mixer for rapid freeze-quench of biological samples. Appl Magn Reson 40:415–425

    Article  PubMed Central  PubMed  Google Scholar 

  6. Cherpanov AV, de Vries S (2004) Microsecond freeze-hyperquenching: development of a new ultrafast micro-mixing and sampling technology and application to enzyme catalysis. Biochim Biophys Acta 1656:1–31

    Article  Google Scholar 

  7. Lin Y, Gerfen GJ, Rousseau DL, Yeh SR (2003) Ultrafast microfluidic mixer and freeze-quenching device. Anal Chem 75:5381–5386

    Article  CAS  PubMed  Google Scholar 

  8. Tanaka M, Matsuura K, Yoshioka S, Takahashi S, Ishimori K, Hori H, Morishima I (2003) Activation of hydrogen peroxide in horseradish peroxidase occurs within approximately 200 micro s observed by a new freeze-quench device. Biophys J 84:1998–2004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Nakamoto K (1997) Infrared and Raman spectroscopy of inorganic and coordination compounds, vol A-B, 5th edn. Wiley, New York

    Google Scholar 

  10. Spiro TG, Czernuszewicz RS (1995) Resonance Raman spectroscopy of metalloproteins. Methods Enzymol 246:416–460

    Article  CAS  PubMed  Google Scholar 

  11. Spiro TG, Li XY (1988) Resonance Raman spectroscopy of metalloporphyrins. In: Spiro TG (ed) Biological applications of Raman spectroscopy. Vol. 3. Resonance Raman spectra of hemes and metalloproteins. Wiley, New York, pp 1–37

    Google Scholar 

  12. Oellerich S, Bill E, Hildebrandt P (2000) Freeze-quench resonance Raman and electron paramagnetic resonance spectroscopy for studying enzyme kinetics: application to azide binding to myoglobin. Appl Spectrosc 54:1480–1484

    Article  CAS  Google Scholar 

  13. Lu S, Wiertz FGM, de Vries S, Moënne-Loccoz P (2005) Resonance Raman characterization of a high-spin six-coordinate iron(III) intermediate in metmyoglobin-azido complex formation trapped by microsecond freeze hyperquenching (MHQ). J Raman Spectrosc 36:359–362

    Article  CAS  Google Scholar 

  14. Moënne-Loccoz P, Krebs C, Herlihy K, Edmondson DE, Theil EC, Huynh BH, Loehr TM (1999) The ferroxidase reaction of ferritin reveals a diferric μ-1,2 bridging peroxide intermediate in common with other O2-activating non-heme diiron proteins. Biochemistry 38:5290–5295

    Article  PubMed  Google Scholar 

  15. Yukl ET, de Vries S, Moënne-Loccoz P (2009) The millisecond intermediate in the reaction of nitric oxide with oxymyoglobin is an iron(III)-nitrato complex, not a peroxynitrite. J Am Chem Soc 131:7234–7235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Gardner PR (2005) Nitric oxide dioxygenase function and mechanism of flavohemoglobin, hemoglobin, myoglobin and their associated reductases. J Inorg Biochem 99:247–266

    Article  CAS  PubMed  Google Scholar 

  17. Ouellet H, Ouellet Y, Richard C, Labarre M, Wittenberg B, Wittenberg J, Guertin M (2002) Truncated hemoglobin HbN protects Mycobacterium bovis from nitric oxide. Proc Natl Acad Sci U S A 99:5902–5907

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Yukl ET, Ioanoviciu A, Sivaramakrishnan S, Nakano MM, Ortiz de Montellano PR, Moënne-Loccoz P (2011) Nitric oxide dioxygenation reaction in DevS and the initial response to nitric oxide in Mycobacterium tuberculosis. Biochemistry 50:1023–1028

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Yukl ET, Jepkorir G, Alontaga AY, Pautsch L, Rodriguez JC, Rivera M, Moënne-Loccoz P (2010) Kinetic and spectroscopic studies of hemin acquisition in the hemophore HasAp from Pseudomonas aeruginosa. Biochemistry 49:6646–6654

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Laverman LE, Wanat A, Oszajca J, Stochel G, Ford PC, van Eldik R (2001) Mechanistic studies on the reversible binding of nitric oxide to metmyoglobin. J Am Chem Soc 123:285–293

    Article  CAS  PubMed  Google Scholar 

  21. Sharma VS, Isaacson RA, John ME, Waterman MR, Chevion M (1983) Reaction of nitric oxide with heme proteins: studies on metmyoglobin, opossum methemoglobin, and microperoxidase. Biochemistry 22:3897–3902

    Article  CAS  PubMed  Google Scholar 

  22. Sharma VS, Traylor TG, Gardiner R, Mizukami H (1987) Reaction of nitric oxide with heme proteins and model compounds of hemoglobin. Biochemistry 26:3837–3843

    Article  CAS  PubMed  Google Scholar 

  23. Antonini E, Brunori M (1971) Hemoglobin and myoglobin in their reactions with ligands. North Holland, Amsterdam

    Google Scholar 

  24. Loehr TM, Sanders-Loehr J (1993) Techniques for obtaining resonance Raman spectra of metalloproteins. Methods Enzymol 226:431–470

    Article  CAS  PubMed  Google Scholar 

  25. Creutz C, Sutin N (1974) Kinetics of the reactions of sodium dithionite with dioxygen and hydrogen peroxide. Inorg Chem 13:2041–2043

    Article  CAS  Google Scholar 

  26. Lim MD, Lorkovic IM, Ford PC (2005) The preparation of anaerobic nitric oxide solutions for the study of heme model systems in aqueous and nonaqueous media: some consequences of NOx impurities. Methods Enzymol 396:3–17

    Article  CAS  PubMed  Google Scholar 

  27. Morikis D, Champion PM, Springer BA, Egebey KD, Sligar SG (1990) Resonance Raman studies of iron spin and axial coordination in distal pocket mutants of ferric myoglobin. J Biol Chem 265:12143–12145

    CAS  PubMed  Google Scholar 

  28. Hu S, Smith KM, Spiro TG (1996) Assignment of protoheme resonance Raman spectrum by heme labeling in myoglobin. J Am Chem Soc 118:12638–12646

    Article  CAS  Google Scholar 

  29. Benko B, Yu NT (1983) Resonance Raman studies of nitric oxide binding to ferric and ferrous hemoproteins: detection of Fe(III)–NO stretching, Fe(III)–N–O bending, and Fe(II)–N–O bending vibrations. Proc Natl Acad Sci U S A 80:7042–7046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of Health (P.M.L., GM074785). H.M. acknowledges the financial support from the Japan Society for the Promotion of Science (Research Fellowship for Young Scientists).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Moënne-Loccoz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Matsumura, H., Moënne-Loccoz, P. (2014). Characterizing Millisecond Intermediates in Hemoproteins Using Rapid-Freeze-Quench Resonance Raman Spectroscopy. In: Fontecilla-Camps, J., Nicolet, Y. (eds) Metalloproteins. Methods in Molecular Biology, vol 1122. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-794-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-794-5_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-793-8

  • Online ISBN: 978-1-62703-794-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics