Skip to main content

Phage-Displayed Single Domain Antibodies as Recognition Elements

  • Protocol
  • First Online:
Virus Hybrids as Nanomaterials

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1108))

Abstract

The variable domains of antibodies can be expressed as a fusion with pIII, a minor coat protein of the bateriophage M13, for the generation of phage-display antibody reagents. The phage-display system is routinely used to enrich for recombinant antibodies against a specific target antigen from highly diverse naïve and immune libraries. Often once binders are selected, they are expressed as soluble proteins; however, it can be advantageous to use the phage-displayed antibody fragment as a reagent in binding assays. The repeating subunits of the viral capsid allows for significant signal amplification of binding events in downstream assays when utilizing a reporter-conjugated secondary antibody specific for the M13 capsid. Alternatively, labeling of the viral capsid with dyes or biotin molecules provides additional methods of achieving signal amplification in a variety of assay formats. The following protocols detail the use of phage-displayed single domain antibodies in sandwich assays for antigen detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Holliger P, Hudson PJ (2005) Engineered antibody fragments and the rise of single domains. Nat Biotechnol 23(9):1126–1136. doi:10.1038/nbt1142

    Article  CAS  Google Scholar 

  2. Hoogenboom HR (2005) Selecting and screening recombinant antibody libraries. Nat Biotechnol 23(9):1105–1116. doi:10.1038/nbt1126

    Article  CAS  Google Scholar 

  3. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317

    Article  CAS  Google Scholar 

  4. Smith GP, Petrenko VA (1997) Phage display. Chem Rev 97:391–410

    Article  CAS  Google Scholar 

  5. Schmitz U, Versmold A, Kaufmann P, Frank HG (2000) Phage display: a molecular tool for the generation of antibodies—a review. Placenta 21:S106–S112. doi:10.1053/plac. 1999.0511

    Article  Google Scholar 

  6. Bird RE, Hardman KD, Jacobson JW, Johnson S, Kaufman BM, Lee S-M, Lee T, Pope SH, Riordan GS, Whitlow M (1988) Single-chain antigen-binding proteins. Science 242:423–426

    Article  CAS  Google Scholar 

  7. Hust M, Jostock T, Menzel C, Voedisch B, Mohr A, Brenneis M, Kirsch MI, Meier D, Dübel S (2007) Single chain Fab (scFab) fragment. BMC Biotechnol 7(1):14. doi:10.1186/1472-6750-7-14

    Article  Google Scholar 

  8. Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, Bendahman N, Hamers R (1993) Naturally occurring antibodies devoid of light chains. Nature 363:446–448

    Article  CAS  Google Scholar 

  9. Dooley H, Flajnik MF, Porter AJ (2003) Selection and characterization of naturally occurring single-domain (IgNAR) antibody fragments from immunized sharks by phage display. Mol Immunol 40(1):25–33

    Article  CAS  Google Scholar 

  10. Muyldermans S, Atarhouch T, Saldanha J, Barbosa JA, Hamers R (1994) Sequence and structure of Vh domain from naturally occurring camel heavy chain immunoglobulins lacking light chains. Protein Engin 7(9):1129–1135

    Article  CAS  Google Scholar 

  11. Greenberg AS, Avila D, Hughes M, Hughes A, McKineey EC, Flajnik MF (1995) A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature 374(6518):168–173

    Article  CAS  Google Scholar 

  12. Nuttall SD, Krishnan UV, Hattarki M, De Gori R, Irving RA, Hudson PJ (2001) Isolation of the new antigen receptor from wobbegong sharks, and use as a scaffold for the display of protein loop libraries. Mol Immunol 38(4):313–326. doi:10.1016/s0161-5890(01)00057-8

    Article  CAS  Google Scholar 

  13. van der Linden RHJ, Frenken LGJ, de Geus B, Harmsen MM, Ruuls RC, Stok W, de Ron L, Wilson S, Davis P, Verrips CT (1999) Comparison of physical chemical properties of llama VHH antibody fragments and mouse monoclonal antibodies. Biochim Biophys Acta 1431:37–46

    Article  Google Scholar 

  14. Goldman ER, Anderson G, Liu J, Delehanty J, Sherwood LJ, Osborn Lisa E, Cummins LB, Hayhurst A (2006) Facile generation of a heat-stable antiviral and antitoxin single domain antibodies from a semisynthetic llama library. Anal Chem 78:8245–8255

    Article  CAS  Google Scholar 

  15. Eyer L, Hruska K (2012) Single-domain antibody fragments derived from heavy-chain antibodies: a review. Vet Med 57(9):439–513

    CAS  Google Scholar 

  16. de Marco A (2011) Biotechnological applications of recombinant single-domain antibody fragments. Microb Cell Fact 10(1):44. doi:10.1186/1475-2859-10-44

    Article  Google Scholar 

  17. Goldman ER, Liu JL, Bernstein RD, Swain MD, Mitchell SQ, Anderson GP (2009) Ricin detection using phage displayed single domain antibodies. Sensors 9(1):542–555. doi:10.3390/s90100542

    Article  CAS  Google Scholar 

  18. Goldman ER, Anderson GP, Bernstein RD, Swain MD (2010) Amplification of immunoassays using phage-displayed single domain antibodies. J Immunol Methods 352(1–2): 182–185. doi:10.1016/j.jim.2009.10.014

    Article  CAS  Google Scholar 

  19. Sherwood LJ, Osborn LE, Carrion R, Patterson JL, Hayhurst A (2007) Rapid assembly of sensitive antigen-capture assays for Marburg virus, using in vitro selection of llama single-domain antibodies, at biosafety level 4. J Infect Dis 196:S213–S219. doi:10.1086/520586

    Article  CAS  Google Scholar 

  20. Kim HJ, McCoy MR, Majkova Z, Dechant JE, Gee SJ, Tabares-da Rosa S, Gonzalez-Sapienza GG, Hammock BD (2012) Isolation of alpaca anti-hapten heavy chain single domain antibodies for development of sensitive immunoassay. Anal Chem 84(2):1165–1171. doi:10.1021/ac2030255

    Article  CAS  Google Scholar 

  21. Hayhurst A, Happe S, Mabry R, Koch Z, Iverson BL, Georgiou G (2003) Isolation and expression of recombinant antibody fragments to the biological warfare pathogen Brucella melitensis. J Immunol Methods 276 (1–2):185–196. doi:10.1016/s0022-1759(03)00100-5

    Article  CAS  Google Scholar 

  22. Zhou B, Wirsching P, Janda KD (2002) Human antibodies against Bacillus: a model study for detection of an protection against anthrax and the bioterrorist threat. Proc Natl Acad Sci USA 99(8):5241–5246. doi:10.1073/pnas.082121599

    Article  CAS  Google Scholar 

  23. Hoogenboom HR, Griffiths AD, Johnson KS, Chiswell DJ, Hudson P, Winter G (1991) Multisubunit proteins on the surface of filamentous phage—methodologies for displaying antibody (FAB) heavy and light-chains. Nucleic Acids Res 19(15):4133–4137. doi:10.1093/nar/19.15.4133

    Article  CAS  Google Scholar 

  24. Hoogenboom HR, de Bruine AP, Hufton SE, Hoet RM, Arends JW, Roovers RC (1998) Antibody phage display technology and its applications. Immunotechnology 4(1):1–20. doi:10.1016/s1380-2933(98)00007-4

    Article  CAS  Google Scholar 

  25. Winter G, Griffiths AD, Hawkins RE, Hoogenboom HR (1994) Making antibodies by phage display technology. Annu Rev Immunol 12:433–455. doi:10.1146/annurev.iy.12.040194.002245

    Article  CAS  Google Scholar 

  26. Schirrmann T, Meyer T, Schutte M, Frenzel A, Hust M (2011) Phage display for the generation of antibodies for proteome research, diagnostics and therapy. Molecules 16(1):412–426. doi:10.3390/molecules16010412

    Article  CAS  Google Scholar 

  27. Clackson T, Lowman HB (eds) (2004) Phage display. Oxford University Press, New York

    Google Scholar 

  28. Smith GP, Scott JK (1993) Libraries of peptides and proteins displayed on filamentous phage. Method Enzymol 217:228–257

    Article  CAS  Google Scholar 

  29. Anderson GP, Liu JL, Hale ML, Bernstein RD, Moore M, Swain MD, Goldman ER (2008) Development of antiricin single domain antibodies toward detection and therapeutic reagents. Anal Chem 80(24):9604–9611. doi:10.1021/ac8019398

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Goldman, E., Walper, S. (2014). Phage-Displayed Single Domain Antibodies as Recognition Elements. In: Lin, B., Ratna, B. (eds) Virus Hybrids as Nanomaterials. Methods in Molecular Biology, vol 1108. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-751-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-751-8_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-750-1

  • Online ISBN: 978-1-62703-751-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics