Skip to main content

Screening and Optimization of Chemically Defined Media and Feeds with Integrated and Statistical Approaches

  • Protocol
  • First Online:
Animal Cell Biotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1104))

Abstract

The majority of therapeutic proteins are expressed in mammalian cells, predominantly in Chinese Hamster Ovary cells. While cell culture media and feed supplements are crucial to protein productivity, medium optimization can be labor intensive and time-consuming. In this chapter, we describe some basic concepts in medium development and introduce a rational and rapid workflow to screen and optimize media and feeds. The major goal of medium screening is to select a base formulation as the foundation for further optimization, but ironically, the most conventional screening method may actually rule out ideal chemically defined medium candidates. Appropriate cell adaptation is the key to identifying an optimal base medium, particularly when cells were originally cultured in serum-free medium containing recombinant proteins and/or undefined hydrolysates. The efficient workflow described herein integrates the optimization of both medium and feed simultaneously using a Design-of-Experiment (DOE) approach. The feasibility of the workflow is then demonstrated with a case study, in which chemically defined medium and feed were optimized in a single fed-batch study using a high-throughput microbioreactor system (SimCell™), which resulted in improving protein titers three- to sixfold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Merten OW (2006) Introduction to animal cell culture technology-past, present and future. Cytotechnology 50(1–3):1–7

    Article  Google Scholar 

  2. Ozturk SS, Hu W-S (2006) Cell culture technology-an overview. Biotechnology and bioprocessing, 1–14

    Google Scholar 

  3. Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22(11):1393–1398

    Article  CAS  Google Scholar 

  4. Jayme DW, Smith SR (2000) Media formulation options and manufacturing process controls to safeguard against introduction of animal origin contaminants in animal cell culture. Cytotechnology 33(1–3):27–36

    Article  CAS  Google Scholar 

  5. Jayme DW, Epstein DA, Conrad DR (1988) Fetal bovine serum alternatives. Nature 334(6182):547–548

    Article  CAS  Google Scholar 

  6. Wong VV et al (2006) Zinc as an insulin replacement in hybridoma cultures. Biotechnol Bioeng 93(3):553–563

    Article  CAS  Google Scholar 

  7. Burteau CC et al (2003) Fortification of a protein-free cell culture medium with plant peptones improves cultivation and productivity of an interferon-gamma-producing CHO cell line. In Vitro Cell Dev Biol Anim 39(7):291–296

    Article  CAS  Google Scholar 

  8. Zhang J et al (2003) Toward consistent and productive complex media for industrial fermentations: studies on yeast extract for a recombinant yeast fermentation process. Biotechnol Bioeng 82(6):640–652

    Article  CAS  Google Scholar 

  9. Gorfien SF et al (2003) Optimized nutrient additives for fed-batch cultures. BioPharm Int April: 34–40

    Google Scholar 

  10. Fike R (2009) Nutrient supplementation strategies for biopharmaceutical production, part 1: Identifying a formulation. BioProcess Int 7(10):44–51

    CAS  Google Scholar 

  11. Fletcher T (2005) Designing culture media for recombinant protein production: a rational approach. BioProcess Int 3(1):2–6

    Google Scholar 

  12. Wlaschin KF, Hu WS (2006) Fed batch culture and dynamic nutrient feeding. Adv Biochem Eng Biotechnol 101:43–74

    CAS  Google Scholar 

  13. Chun C et al (2003) Application of factorial design to accelerate identification of CHO growth factor requirements. Biotechnol Prog 19(1):52–57

    Article  CAS  Google Scholar 

  14. Parampalli A et al (2007) Development of serum-free media in CHO-DG44 cells using a central composite statistical design. Cytotechnology 54(1):57–68

    Article  CAS  Google Scholar 

  15. De Alwis DM et al (2007) Statistical methods in media optimization for batch and fed-batch animal cell culture. Bioprocess Biosyst Eng 30(2):107–113

    Article  CAS  Google Scholar 

  16. Hacker DL, De Jesus M, Wurm FM (2009) 25 years of recombinant proteins from reactor-grown cells—where do we go from here? Biotechnol Adv 27(6):1023–1027

    Article  CAS  Google Scholar 

  17. Betts JI, Baganz F (2006) Miniature bioreactors: current practices and future opportunities. Microb Cell Fact 5:21

    Article  Google Scholar 

  18. De Jesus M et al (2004) TubeSpin satellites: a fast track approach for process development with animal cells using shaking technology. Biochem Eng J 17(3):217–223

    Article  Google Scholar 

  19. Chen A et al (2009) Twenty-four well plate miniature bioreactor system as a scale-down model for cell culture process development. Biotechnol Bioeng 102(1):148–160

    Article  CAS  Google Scholar 

  20. Kensy F et al (2005) Characterisation of operation conditions and online monitoring of physiological culture parameters in shaken 24-well microtiter plates. Bioprocess Biosyst Eng 28(2):75–81

    Article  CAS  Google Scholar 

  21. Funke M et al (2010) Microfluidic biolector-microfluidic bioprocess control in microtiter plates. Biotechnol Bioeng 107(3):497–505

    Article  CAS  Google Scholar 

  22. Silk NJ et al (2010) Fed-batch operation of an industrial cell culture process in shaken microwells. Biotechnol Lett 32(1):73–78

    Article  CAS  Google Scholar 

  23. Amanullah A et al (2010) Novel micro-bioreactor high throughput technology for cell culture process development: reproducibility and scalability assessment of fed-batch CHO cultures. Biotechnol Bioeng 106(1):57–67

    CAS  Google Scholar 

  24. Legmann R et al (2009) A predictive high-throughput scale-down model of monoclonal antibody production in CHO cells. Biotechnol Bioeng 104(6):1107–1120

    Article  CAS  Google Scholar 

  25. Xiao Z et al (2010) Rapid creation of platform fed-batch process using a high throughput (SimCell) system. In: Cell culture engineering XII, 2010. Banff, Canada

    Google Scholar 

  26. Ma N et al (2009) A single nutrient feed supports both chemically defined NS0 and CHO fed-batch processes: improved productivity and lactate metabolism. Biotechnol Prog 25(5):1353–1363

    Article  Google Scholar 

  27. Paul WC et al (2009) Maintaining product titer while replacing undefined components in a CHO culture system. BioProcess Int 7(8):30–38

    CAS  Google Scholar 

  28. Crowell CK et al (2007) Amino acid and manganese supplementation modulates the glycosylation state of erythropoietin in a CHO culture system. Biotechnol Bioeng 96(3):538–549

    Article  CAS  Google Scholar 

  29. Delorme E et al (1992) Role of glycosylation on the secretion and biological activity of erythropoietin. Biochemistry 31(41):9871–9876

    Article  CAS  Google Scholar 

  30. Gnoth S et al (2008) Control of cultivation processes for recombinant protein production: a review. Bioprocess Biosyst Eng 31(1):21–39

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the contribution of scientists at Life Technologies, particularly Erica Wehling, Ekta Goel, Shyam Kumar, and Yuan Wen, for their execution of the studies presented here. The authors also wish to acknowledge the contribution of Lu Ren, Jaime Clark, Eric Burden, and Brian Benoit from Seahorse Bioscience for their engineering and application support on the SimCell™ system.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Xiao, Z., Sabourin, M., Piras, G., Gorfien, S.F. (2014). Screening and Optimization of Chemically Defined Media and Feeds with Integrated and Statistical Approaches. In: Pörtner, R. (eds) Animal Cell Biotechnology. Methods in Molecular Biology, vol 1104. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-733-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-733-4_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-732-7

  • Online ISBN: 978-1-62703-733-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics