Skip to main content

Disposable Bioreactors for Inoculum Production and Protein Expression

  • Protocol
  • First Online:
Animal Cell Biotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1104))

Abstract

Disposable bioreactors have been increasingly implemented over the past ten years. This relates to both R & D and commercial manufacture, in particular, in animal cell-based processes. Among the numerous disposable bioreactors which are available today, wave-mixed bag bioreactors and stirred bioreactors are predominant. Whereas wave-mixed bag bioreactors represent the system of choice for inoculum production, stirred systems are often preferred for protein expression. For this reason, the authors present protocols instructing the reader how to use the wave-mixed BIOSTAT CultiBag RM 20 L for inoculum production and the stirred UniVessel SU 2 L for recombinant protein production at benchtop scale. All methods described are based on a Chinese hamster ovary (CHO) suspension cell line expressing the human placental secreted alkaline phosphatase (SEAP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Eibl R, Löffelholz C, Eibl D (2011) Single-use bioreactors – an overview. In: Eibl R, Eibl D (eds) Single-use technology in biopharmaceutical manufacture. John Wiley & Sons, Hoboken, NJ, pp 33–51

    Chapter  Google Scholar 

  2. Langer ES (2009) Trends in single-use bioproduction. BioProc Int 7(suppl 4):6–8

    Google Scholar 

  3. Ott KD (2011) Are single-use technologies changing the game? BioProc Int 9(suppl 2): 48–51

    Google Scholar 

  4. Jenke D (2007) Evaluation of the chemical compatibility of plastic contact materials and pharmaceutical products; safety considerations related to extractables and leachables. J Pharm Sci 96:2566–2581

    Article  CAS  Google Scholar 

  5. Altaras GM, Eklund C, Ranucci C et al (2007) Quantitation of lipids with polymer surfaces in cell culture. Biotechnol Bioeng 96: 999–1007

    Article  CAS  Google Scholar 

  6. Okonkowski J, Balasubramanian U, Seammans C et al (2007) Cholesterol delivery to NS0 cells: challenges and solutions in disposable linear low-density polyethylene-based bioreactors. J Biosci Bioeng 103:50–59

    Article  CAS  Google Scholar 

  7. Bestwick D, Colton R (2009) Extractables and leachables from single-use disposables. BioProc Int 7(suppl 1):88–94

    CAS  Google Scholar 

  8. Rader RA, Langer ES (2012) Upstream single-use bioprocessing systems. BioProc Int 10 (suppl 2):12–19

    Google Scholar 

  9. Lindner P, Endres C, Bluma A et al (2011) Disposable sensor systems. In: Eibl R, Eibl D (eds) Single-use technology in biopharmaceutical manufacture. John Wiley & Sons, Hoboken, NJ, pp 67–81

    Chapter  Google Scholar 

  10. Eibl R, Eibl D (2011) Single-use cell culture systems arrive. GEN 17:59–61

    Google Scholar 

  11. Falkenberg FW (1998) Production of monoclonal antibodies in the miniPerm bioreactor: comparison with other hybridoma culture methods. Res Immunol 6:560–570

    Article  Google Scholar 

  12. Trebak M, Chong JM, Herlyn D et al (1999) Efficient laboratory-scale production of monoclonal antibodies using membrane-based high-density cell culture technology. J Immunol Meth 230:59–70

    Article  CAS  Google Scholar 

  13. Nagel A, Koch S, Valley U et al (1999) Membrane-based cell culture systems – an alternative to in vivo production of monoclonal antibodies. Dev Biol Stand 101:57–64

    CAS  Google Scholar 

  14. Scott LE, Aggett H, Glencross DK (2001) Manufacture of pure antibodies by heterogeneous culture without downstream purification. Biotechnology 31:666–668

    CAS  Google Scholar 

  15. Hopkinson J (1985) Hollow fiber cell culture system for economical cell-product manufacturing. BioTechnol 3:225–230

    Article  Google Scholar 

  16. Gorter A, van de Griend RJ, van Eendenburg JD et al (1993) Production of bi-specific monoclonal antibodies in a hollow-fiber bioreactor. J Immunol Meth 161:145–150

    Article  CAS  Google Scholar 

  17. Marx U (1998) Membrane-based cell culture technologies: a scientifically economically satisfactory alternative malignant ascites production for monoclonal antibodies. Res Immunol 6: 557–559

    Article  Google Scholar 

  18. DePalma A (2012) Optimizing cells and cultures for better productivity. GEN 3:32–34

    Google Scholar 

  19. Wenk P, Hemmerich J, Müller C et al (2012) Hochparallele Bioprozessentwicklung in geschüttelten Mikrobioreaktoren. Chem Ing Tech 5: 704–714

    Article  Google Scholar 

  20. Rowley J, Abraham E, Campbell A et al (2012) Meeting lot-size challenges of manufacturing adherent cells for therapy. BioProc Int 10(suppl 3):16–22

    CAS  Google Scholar 

  21. Eibl R, Kaiser S, Lombriser R et al (2010) Disposable bioreactors: the current state-of-the-art and recommended applications in biotechnology. Appl Microbiol Biotechnol 86:41–49

    Article  CAS  Google Scholar 

  22. Kaiser S, Eibl R, Eibl D (2011) Engineering characteristics of a single-use stirred bioreactor at bench-scale: the Mobius Cell Ready 3 L bioreactor as a case study. Eng Life Sci 4: 359–368

    Article  Google Scholar 

  23. Werner S, Eibl R, Lettenbauer C et al (2010) Innovative, non-stirred bioreactors in scales from milliliters up to 1000 liters for suspension cultures of cells using disposable bags and containers – a swiss contribution. Chimia 11: 819–823

    Article  Google Scholar 

  24. Zhang X, Stettler M, De Sanctis D et al (2009) Use of orbital shaken disposable bioreactors for mammalian cell cultures from the milliliter-scale to the 1000-liter scale. Adv Biochem Eng Biotechnol 115:33–53

    CAS  Google Scholar 

  25. Klöckner W, Tissot S, Wurm F et al (2012) Power input correlation to characterize the hydrodynamics of cylindrical orbitally shaken bioreactors. Bioch Eng J 65:63–69

    Article  Google Scholar 

  26. Eibl R, Eibl D (2006) Design and use of the Wave Bioreactor for plant cell culture. In: Dutta Gupta S, Ibaraki Y (eds) Plant tissue culture engineering, series: focus on biotechnology, vol 6. Springer, Dordrecht, pp 203–227

    Chapter  Google Scholar 

  27. Eibl R, Werner S, Eibl D (2009) Disposable bioreactors for plant liquid cultures at litre-scale. Eng Life Sci 9:156–164

    Article  CAS  Google Scholar 

  28. Eibl R, Werner S, Eibl D (2009) Bag bioreactor based on wave-induced motion. Adv Biochem Eng Biotechnol 115:55–87

    CAS  Google Scholar 

  29. Löffelholz C, Husemann U, Greller G et al (2013) Bioengineering parameters for single-use bioreactors: overview and evaluation of suitable methods. Chem Ing Tech 85:40–56

    Article  Google Scholar 

  30. Löffelholz C, Kaiser S, Kraume M et al (2013) Dynamic single-use bioreactors used in modern litre and m3 scale biotechnological processes: engineering characteristics and scaling-up. Adv Biochem Eng Biotechnol. DOI: 10.1007/10_2013-187

  31. Mazur X, Fussenegger M, Renner WA, Bailey JE (1998) Higher productivity of growth-arrested Chinese hamster ovary cells expressing the cyclin-dependent kinase inhibitor p27. Biotechnol Prog 14:705–713

    Article  CAS  Google Scholar 

  32. Kaufmann H, Mazur X, Fussenegger M, Bailey JE (1999) Influence of low temperature on productivity, proteome and protein phosphorylation of CHO cells. Biotechnol Bioeng 63: 573–582

    Article  CAS  Google Scholar 

  33. Hummel A (2012) Zellkulturbasierte Proteinexpressionen mit partiellem und vollständigem Medienaustausch. Bachelor thesis, Anhalt University of Applied Science

    Google Scholar 

Download references

Acknowledgements

We wish to thank: the Fussenegger group (Swiss Federal Institute of Technology Zurich) for engineering the cell line, Nina Steiger and Lidija Lisica (both from the Zurich University of Applied Sciences, School of Life Sciences and Facility Management) for their technical assistance in developing the protocols, and Susanne Roederstein, Tanja Rau, Gerhard Greller, Alexander Tappe (all from Sartorius Stedim Biotech), Sebastian Rothe (GE Healthcare Life Sciences), and Wolfgang Dornfeld (Levitronix) for many helpful discussions and support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Eibl, R., Löffelholz, C., Eibl, D. (2014). Disposable Bioreactors for Inoculum Production and Protein Expression. In: Pörtner, R. (eds) Animal Cell Biotechnology. Methods in Molecular Biology, vol 1104. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-733-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-733-4_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-732-7

  • Online ISBN: 978-1-62703-733-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics