Skip to main content

HIV-1 Chromatin, Transcription, and the Regulatory Protein Tat

  • Protocol
Human Retroviruses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1087))

Abstract

Upon integration into the host cell genome, the nucleosomal organization and epigenetic control of the HIV-1 provirus play an active role in its transcriptional regulation. Therefore, characterization of the chromatin changes that occur in the viral promoter region in response to different cellular stimuli or drug treatments represents an important aspect of our understanding of HIV-1 transcription. Moreover, the viral transactivator Tat protein potently activates HIV-1 transcription by recruiting the cellular positive transcription elongation factor p-TEFb to the TAR element located at the 5′ end of all nascent viral transcripts, thereby promoting efficient elongation. This chapter describes two complementary techniques for analyzing chromatin structure. The first technique is called indirect end-labeling and uses DNase I, micrococcal nuclease (MNase) or specific restriction enzymes to provide a view of nucleosome positions and of nucleosome-free regions within genes that are usually associated with transcriptional regulatory elements. The second technique, called chromatin immunoprecipitation (ChIP), provides a detailed analysis of chromatin structure by determining the pattern of histone modification marks in the DNA region of interest and by identifying the transcription factors as well as the components of the transcriptional initiation and elongation machineries that are recruited in vivo to this chromosomal region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Colin L, Van Lint C (2009) Molecular control of HIV-1 postintegration latency: implications for the development of new therapeutic strategies. Retrovirology 6:111

    Article  PubMed Central  PubMed  Google Scholar 

  2. van Opijnen T, Kamoschinski J, Jeeninga RE, Berkhout B (2004) The human immunodeficiency virus type 1 promoter contains a CATA box instead of a TATA box for optimal transcription and replication. J Virol 78:6883–6890

    Article  PubMed Central  PubMed  Google Scholar 

  3. Rittner K, Churcher MJ, Gait MJ, Karn J (1995) The human immunodeficiency virus long terminal repeat includes a specialised initiator element which is required for Tat-responsive transcription. J Mol Biol 248:562–580

    Article  CAS  PubMed  Google Scholar 

  4. Harrich D, Garcia J, Wu F, Mitsuyasu R, Gonazalez J, Gaynor R (1989) Role of SP1-binding domains in in vivo transcriptional regulation of the human immunodeficiency virus type 1 long terminal repeat. J Virol 63:2585–2591

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Van Lint C, Amella CA, Emiliani S, John M, Jie T, Verdin E (1997) Transcription factor binding sites downstream of the human immunodeficiency virus type 1 transcription start site are important for virus infectivity. J Virol 71:6113–6127

    PubMed Central  PubMed  Google Scholar 

  6. Ping YH, Rana TM (2001) DSIF and NELF interact with RNA polymerase II elongation complex and HIV-1 Tat stimulates P-TEFb-mediated phosphorylation of RNA polymerase II and DSIF during transcription elongation. J Biol Chem 276:12951–12958

    Article  CAS  PubMed  Google Scholar 

  7. Yamaguchi Y, Takagi T, Wada T, Yano K, Furuya A, Sugimoto S, Hasegawa J, Handa H (1999) NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 97:41–51

    Article  CAS  PubMed  Google Scholar 

  8. Parada CA, Roeder RG (1996) Enhanced processivity of RNA polymerase II triggered by Tat-induced phosphorylation of its carboxy-terminal domain. Nature 384:375–378

    Article  CAS  PubMed  Google Scholar 

  9. Barboric M, Peterlin BM (2005) A new paradigm in eukaryotic biology: HIV Tat and the control of transcriptional elongation. PLoS Biol 3:e76

    Article  PubMed Central  PubMed  Google Scholar 

  10. Benkirane M, Chun RF, Xiao H, Ogryzko VV, Howard BH, Nakatani Y, Jeang KT (1998) Activation of integrated provirus requires histone acetyltransferase. p300 and P/CAF are coactivators for HIV-1 Tat. J Biol Chem 273:24898–24905

    Article  CAS  PubMed  Google Scholar 

  11. Henderson A, Holloway A, Reeves R, Tremethick DJ (2004) Recruitment of SWI/SNF to the human immunodeficiency virus type 1 promoter. Mol Cell Biol 24:389–397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Treand C, du Chene I, Bres V, Kiernan R, Benarous R, Benkirane M, Emiliani S (2006) Requirement for SWI/SNF chromatin-remodeling complex in Tat-mediated activation of the HIV-1 promoter. EMBO J 25:1690–1699

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Mahmoudi T, Parra M, Vries RG, Kauder SE, Verrijzer CP, Ott M, Verdin E (2006) The SWI/SNF chromatin-remodeling complex is a cofactor for Tat transactivation of the HIV promoter. J Biol Chem 281:19960–19968

    Article  CAS  PubMed  Google Scholar 

  14. Sobhian B, Laguette N, Yatim A, Nakamura M, Levy Y, Kiernan R, Benkirane M (2010) HIV-1 Tat assembles a multifunctional transcription elongation complex and stably associates with the 7SK snRNP. Mol Cell 38:439–451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Nakatani Y, Ogryzko V (2003) Immunoaffinity purification of mammalian protein complexes. Methods Enzymol 370:430–444

    Article  CAS  PubMed  Google Scholar 

  16. Ott M, Geyer M, Zhou Q (2011) The control of HIV transcription: keeping RNA polymerase II on track. Cell Host Microbe 10:426–435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Kiernan RE, Vanhulle C, Schiltz L, Adam E, Xiao H, Maudoux F, Calomme C, Burny A, Nakatani Y, Jeang KT, Benkirane M, Van Lint C (1999) HIV-1 tat transcriptional activity is regulated by acetylation. EMBO J 18:6106–6118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Chiu YL, Ho CK, Saha N, Schwer B, Shuman S, Rana TM (2002) Tat stimulates cotranscriptional capping of HIV mRNA. Mol Cell 10:585–597

    Article  CAS  PubMed  Google Scholar 

  19. Berro R, Kehn K, de la Fuente C, Pumfery A, Adair R, Wade J, Colberg-Poley AM, Hiscott J, Kashanchi F (2006) Acetylated Tat regulates human immunodeficiency virus type 1 splicing through its interaction with the splicing regulator p32. J Virol 80:3189–3204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Mbonye U, Karn J (2011) Control of HIV latency by epigenetic and non-epigenetic mechanisms. Curr HIV Res 9:554–567

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Verdin E (1991) DNase I-hypersensitive sites are associated with both long terminal repeats and with the intragenic enhancer of integrated human immunodeficiency virus type 1. J Virol 65:6790–6799

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Verdin E, Paras P Jr, Van Lint C (1993) Chromatin disruption in the promoter of human immunodeficiency virus type 1 during transcriptional activation. EMBO J 12:3249–3259

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Van Lint C, Emiliani S, Ott M, Verdin E (1996) Transcriptional activation and chromatin remodeling of the HIV-1 promoter in response to histone acetylation. EMBO J 15:1112–1120

    PubMed Central  PubMed  Google Scholar 

  24. Van Lint C, Ghysdael J, Paras P Jr, Burny A, Verdin E (1994) A transcriptional regulatory element is associated with a nuclease-hypersensitive site in the pol gene of human immunodeficiency virus type 1. J Virol 68:2632–2648

    PubMed Central  PubMed  Google Scholar 

  25. Verdin E, Becker N, Bex F, Droogmans L, Burny A (1990) Identification and characterization of an enhancer in the coding region of the genome of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A 87:4874–4878

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Goffin V, Demonte D, Vanhulle C, de Walque S, de Launoit Y, Burny A, Collette Y, Van Lint C (2005) Transcription factor binding sites in the pol gene intragenic regulatory region of HIV-1 are important for virus infectivity. Nucleic Acids Res 33:4285–4310

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Colin L, Vandenhoudt N, de Walque S, Van Driessche B, Bergamaschi A, Martinelli V, Cherrier T, Vanhulle C, Guiguen A, David A, Burny A, Herbein G, Pancino G, Rohr O, Van Lint C (2011) The AP-1 binding sites located in the pol gene intragenic regulatory region of HIV-1 are important for viral replication. PLoS One 6:e19084

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Trono D, Van Lint C, Rouzioux C, Verdin E, Barre-Sinoussi F, Chun TW, Chomont N (2010) HIV persistence and the prospect of long-term drug-free remissions for HIV-infected individuals. Science 329:174–180

    Article  CAS  PubMed  Google Scholar 

  29. Lewin SR, Evans VA, Elliott JH, Spire B, Chomont N (2011) Finding a cure for HIV: will it ever be achievable? J Int AIDS Soc 14:4

    Article  PubMed Central  PubMed  Google Scholar 

  30. Chavez L, Kauder S, Verdin E (2011) In vivo, in vitro, and in silico analysis of methylation of the HIV-1 provirus. Methods 53:47–53

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Tyagi M, Karn J (2007) CBF-1 promotes transcriptional silencing during the establishment of HIV-1 latency. EMBO J 26:4985–4995

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Williams SA, Chen LF, Kwon H, Ruiz-Jarabo CM, Verdin E, Greene WC (2006) NF-kappaB p50 promotes HIV latency through HDAC recruitment and repression of transcriptional initiation. EMBO J 25:139–149

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. He G, Margolis DM (2002) Counterregulation of chromatin deacetylation and histone deacetylase occupancy at the integrated promoter of human immunodeficiency virus type 1 (HIV-1) by the HIV-1 repressor YY1 and HIV-1 activator Tat. Mol Cell Biol 22:2965–2973

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Lusic M, Marcello A, Cereseto A, Giacca M (2003) Regulation of HIV-1 gene expression by histone acetylation and factor recruitment at the LTR promoter. EMBO J 22:6550–6561

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Marban C, Suzanne S, Dequiedt F, de Walque S, Redel L, Van Lint C, Aunis D, Rohr O (2007) Recruitment of chromatin-modifying enzymes by CTIP2 promotes HIV-1 transcriptional silencing. EMBO J 26:412–423

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. du Chene I, Basyuk E, Lin YL, Triboulet R, Knezevich A, Chable-Bessia C, Mettling C, Baillat V, Reynes J, Corbeau P, Bertrand E, Marcello A, Emiliani S, Kiernan R, Benkirane M (2007) Suv39H1 and HP1gamma are responsible for chromatin-mediated HIV-1 transcriptional silencing and post-integration latency. EMBO J 26:424–435

    Article  PubMed Central  PubMed  Google Scholar 

  37. Imai K, Togami H, Okamoto T (2010) Involvement of histone H3 lysine 9 (H3K9) methyltransferase G9a in the maintenance of HIV-1 latency and its reactivation by BIX01294. J Biol Chem 285:16538–16545

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Marban C, Redel L, Suzanne S, Van Lint C, Lecestre D, Chasserot-Golaz S, Leid M, Aunis D, Schaeffer E, Rohr O (2005) COUP-TF interacting protein 2 represses the initial phase of HIV-1 gene transcription in human microglial cells. Nucleic Acids Res 33:2318–2331

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Friedman J, Cho WK, Chu CK, Keedy KS, Archin NM, Margolis DM, Karn J (2011) Epigenetic silencing of HIV-1 by the histone H3 lysine 27 methyltransferase enhancer of zeste 2 (EZH2). J Virol 85:9078–9089

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Kauder SE, Bosque A, Lindqvist A, Planelles V, Verdin E (2009) Epigenetic regulation of HIV-1 latency by cytosine methylation. PLoS Pathog 5:e1000495

    Article  PubMed Central  PubMed  Google Scholar 

  41. Blazkova J, Trejbalova K, Gondois-Rey F, Halfon P, Philibert P, Guiguen A, Verdin E, Olive D, Van Lint C, Hejnar J, Hirsch I (2009) CpG methylation controls reactivation of HIV from latency. PLoS Pathog 5:e1000554

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Colin, L., Verdin, E., Van Lint, C. (2014). HIV-1 Chromatin, Transcription, and the Regulatory Protein Tat. In: Vicenzi, E., Poli, G. (eds) Human Retroviruses. Methods in Molecular Biology, vol 1087. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-670-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-670-2_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-669-6

  • Online ISBN: 978-1-62703-670-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics