Skip to main content

Stabilization of Collagen-Model, Triple-Helical Peptides for In Vitro and In Vivo Applications

  • Protocol
  • First Online:
Peptide Modifications to Increase Metabolic Stability and Activity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1081))

Abstract

The triple-helical structure of collagen has been accurately reproduced in numerous chemical and recombinant model systems. Triple-helical peptides and proteins have found application for dissecting collagen-stabilizing forces, isolating receptor- and protein-binding sites in collagen, mechanistic examination of collagenolytic proteases, and development of novel biomaterials. Introduction of native-like sequences into triple-helical constructs can reduce the thermal stability of the triple-helix to below that of the physiological environment. In turn, incorporation of nonnative amino acids and/or templates can enhance triple-helix stability. We presently describe approaches by which triple-helical structure can be modulated for use under physiological or near-physiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Myllyharju J, Kivirikko KI (2001) Collagens and collagen-related diseases. Ann Med 33:7–21

    Article  PubMed  CAS  Google Scholar 

  2. Hashimoto T, Wakabayashi T, Watanabe A, Kowa H, Hosoda R, Nakamura A, Kanazawa I, Arai T, Takio K, Mann DM, Iwatsubo T (2002) CLAC: a novel Alzheimer amyloid plaque component derived from a transmembrane precursor, CLAC-P/collagen type XXV. EMBO J 21:1524–1534

    Article  PubMed  CAS  Google Scholar 

  3. Boulegue C, Musiol HJ, Gotz MG, Renner C, Moroder L (2008) Natural and artificial cystine knots for assembly of homo- and heterotrimeric collagen models. Antioxid Redox Signal 10:113–125

    Article  PubMed  CAS  Google Scholar 

  4. Gordon MK, Hahn RA (2010) Collagens. Cell Tissue Res 339:247–257

    Article  PubMed  CAS  Google Scholar 

  5. Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem 78:929–958

    Article  PubMed  CAS  Google Scholar 

  6. Cole WG (1994) Collagen genes: mutations affecting collagen structure and expression. Prog Nucleic Acid Res Mol Biol 47:29–80

    Article  PubMed  CAS  Google Scholar 

  7. Brodsky B, Shah NK (1995) Protein motifs. 8. The triple-helix motif in proteins. FASEB J 9:1537–1546

    PubMed  CAS  Google Scholar 

  8. Fields GB, Prockop DJ (1996) Perspectives on the synthesis and application of triple-helical, collagen-model peptides. Biopolymers 40:345–357

    Article  PubMed  CAS  Google Scholar 

  9. Jenkins CL, Raines RT (2002) Insights on the conformational stability of collagen. Nat Prod Rep 19:49–59

    Article  PubMed  CAS  Google Scholar 

  10. Koide T (2005) Triple helical collagen-like peptides: engineering and applications in matrix biology. Connect Tissue Res 46:131–141

    Article  PubMed  CAS  Google Scholar 

  11. Koide T (2007) Designed triple-helical peptides as tools for collagen biochemistry and matrix engineering. Philos Trans R Soc Lond B Biol Sci 362:1281–1291

    Article  PubMed  CAS  Google Scholar 

  12. Brodsky B, Thiagarajan G, Madhan B, Kar K (2008) Triple-helical peptides: an approach to collagen conformation, stability, and self-association. Biopolymers 89:345–353

    Article  PubMed  CAS  Google Scholar 

  13. Fields GB (2010) Synthesis and biological applications of collagen-model triple-helical peptides. Org Biomol Chem 8:1237–1258

    Article  PubMed  CAS  Google Scholar 

  14. Ramachandran GN, Kartha G (1954) Structure of collagen. Nature 174:269–270

    Article  PubMed  CAS  Google Scholar 

  15. Ramachandran GN, Kartha G (1955) Structure of collagen. Nature 176:593–595

    Article  PubMed  CAS  Google Scholar 

  16. Rich A, Crick FH (1955) The structure of collagen. Nature 176:915–916

    Article  PubMed  CAS  Google Scholar 

  17. Rich A, Crick FH (1961) The molecular structure of collagen. J Mol Biol 3:483–506

    Article  PubMed  CAS  Google Scholar 

  18. Bella J, Eaton M, Brodsky B, Berman HM (1994) Crystal and molecular structure of a collagen-like peptide at 1.9 A resolution. Science 266:75–81

    Article  PubMed  CAS  Google Scholar 

  19. Riddihough G (1998) Structure of collagen. Nat Struct Biol 5:858

    Google Scholar 

  20. Okuyama K, Miyama K, Mizuno K, Bachinger HP (2012) Crystal structure of (Gly-Pro-Hyp)(9): implications for the collagen molecular model. Biopolymers 97:607–616

    Article  PubMed  CAS  Google Scholar 

  21. Woodhead-Galloway J (1980) Collagen: the anatomy of a protein. Edward Arnold Limited, London

    Google Scholar 

  22. Jenkins CL, Vasbinder MM, Miller SJ, Raines RT (2005) Peptide bond isosteres: ester or (E)-alkene in the backbone of the collagen triple helix. Org Lett 7:2619–2622

    Article  PubMed  CAS  Google Scholar 

  23. Dai N, Wang XJ, Etzkorn FA (2008) The effect of a trans-locked Gly-Pro alkene isostere on collagen triple helix stability. J Am Chem Soc 130:5396–5397

    Article  PubMed  CAS  Google Scholar 

  24. Dai N, Etzkorn FA (2009) Cis-trans proline isomerization effects on collagen triple-helix stability are limited. J Am Chem Soc 131:13728–13732

    Article  PubMed  CAS  Google Scholar 

  25. Holmgren SK, Taylor KM, Bretscher LE, Raines RT (1998) Code for collagen’s stability deciphered. Nature 392:666–667

    Article  PubMed  CAS  Google Scholar 

  26. Holmgren SK, Bretscher LE, Taylor KM, Raines RT (1999) A hyperstable collagen mimic. Chem Biol 6:63–70

    Article  PubMed  CAS  Google Scholar 

  27. Bretscher LE, Jenkins CL, Taylor KM, Derider ML, Raines RT (2001) Conformational stability of collagen relies on a stereoelectronic effect. J Am Chem Soc 123:777–778

    Article  PubMed  CAS  Google Scholar 

  28. Eberhardt ES, Panisik N Jr, Raines RT (1996) Inductive effects on the energetics of prolyl peptide bond isomerization: implications for collagen folding and stability. J Am Chem Soc 118:12261–12266

    Article  PubMed  CAS  Google Scholar 

  29. Sakakibara S, Inouye K, Shudo K, Kishida Y, Kobayashi Y, Prockop DJ (1973) Synthesis of (Pro-Hyp-Gly) n of defined molecular weights. Evidence for the stabilization of collagen triple helix by hydroxypyroline. Biochim Biophys Acta 303:198–202

    Article  PubMed  CAS  Google Scholar 

  30. Kotch FW, Guzei IA, Raines RT (2008) Stabilization of the collagen triple helix by O-methylation of hydroxyproline residues. J Am Chem Soc 130:2952–2953

    Article  PubMed  CAS  Google Scholar 

  31. Nagarajan V, Kamitori S, Okuyama K (1999) Structure analysis of a collagen-model peptide with a (Pro-Hyp-Gly) sequence repeat. J Biochem 125:310–318

    Article  PubMed  CAS  Google Scholar 

  32. Inouye K, Sakakibara S, Prockop DJ (1976) Effects of the stereo-configuration of the hydroxyl group in 4-hydroxyproline on the triple-helical structures formed by homogenous peptides resembling collagen. Biochim Biophys Acta 420:133–141

    Article  PubMed  CAS  Google Scholar 

  33. Bann JG, Bachinger HP (2000) Glycosylation/hydroxylation-induced stabilization of the collagen triple helix. 4-trans-hydroxyproline in the Xaa position can stabilize the triple helix. J Biol Chem 275:24466–24469

    Article  PubMed  CAS  Google Scholar 

  34. Mizuno K, Hayashi T, Bachinger HP (2003) Hydroxylation-induced stabilization of the collagen triple helix. Further characterization of peptides with 4(R)-hydroxyproline in the Xaa position. J Biol Chem 278:32373–32379

    Article  PubMed  CAS  Google Scholar 

  35. Derider ML, Wilkens SJ, Waddell MJ, Bretscher LE, Weinhold F, Raines RT, Markley JL (2002) Collagen stability: insights from NMR spectroscopic and hybrid density functional computational investigations of the effect of electronegative substituents on prolyl ring conformations. J Am Chem Soc 124:2497–2505

    Article  PubMed  CAS  Google Scholar 

  36. Vitagliano L, Berisio R, Mastrangelo A, Mazzarella L, Zagari A (2001) Preferred proline puckerings in cis and trans peptide groups: implications for collagen stability. Protein Sci 10:2627–2632

    Article  PubMed  CAS  Google Scholar 

  37. Shoulders MD, Satyshur KA, Forest KT, Raines RT (2010) Stereoelectronic and steric effects in side chains preorganize a protein main chain. Proc Natl Acad Sci USA 107:559–564

    Article  PubMed  CAS  Google Scholar 

  38. Shoulders MD, Hodges JA, Raines RT (2006) Reciprocity of steric and stereoelectronic effects in the collagen triple helix. J Am Chem Soc 128:8112–8113

    Article  PubMed  CAS  Google Scholar 

  39. Lee SG, Lee JY, Chmielewski J (2008) Investigation of pH-dependent collagen triple-helix formation. Angew Chem Int Ed Engl 47:8429–8432

    Article  PubMed  CAS  Google Scholar 

  40. Babu IR, Ganesh KN (2001) Enhanced triple helix stability of collagen peptides with 4R-aminoprolyl (Amp) residues: relative roles of electrostatic and hydrogen bonding effects. J Am Chem Soc 123:2079–2080

    Article  PubMed  CAS  Google Scholar 

  41. Umashankara M, Babu IR, Ganesh KN (2003) Two prolines with a difference: contrasting stereoelectronic effects of 4R/S-aminoproline on triplex stability in collagen peptides [pro(X)-pro(Y)-Gly]n. Chem Commun (Camb) 20:2606–2607

    Article  CAS  Google Scholar 

  42. Shah NK, Ramshaw JA, Kirkpatrick A, Shah C, Brodsky B (1996) A host-guest set of triple-helical peptides: stability of Gly-X-Y triplets containing common nonpolar residues. Biochemistry 35:10262–10268

    Article  PubMed  CAS  Google Scholar 

  43. Persikov AV, Ramshaw JA, Brodsky B (2000) Collagen model peptides: sequence dependence of triple-helix stability. Biopolymers 55:436–450

    Article  PubMed  CAS  Google Scholar 

  44. Persikov AV, Ramshaw JA, Kirkpatrick A, Brodsky B (2000) Amino acid propensities for the collagen triple-helix. Biochemistry 39:14960–14967

    Article  PubMed  CAS  Google Scholar 

  45. Berisio R, DS A, Ruggiero A, Improta R, Vitagliano L (2008) Role of side chains in collagen triple helix stabilization and partner recognition. J Pept Sci 15:131–140

    Article  CAS  Google Scholar 

  46. Persikov AV, Ramshaw JA, Kirkpatrick A, Brodsky B (2003) Triple-helix propensity of hydroxyproline and fluoroproline: comparison of host-guest and repeating tripeptide collagen models. J Am Chem Soc 125:11500–11501

    Article  PubMed  CAS  Google Scholar 

  47. Persikov AV, Ramshaw JA, Brodsky B (2005) Prediction of collagen stability from amino acid sequence. J Biol Chem 280:19343–19349

    Article  PubMed  CAS  Google Scholar 

  48. Venugopal MG, Ramshaw JA, Braswell E, Zhu D, Brodsky B (1994) Electrostatic interactions in collagen-like triple-helical peptides. Biochemistry 33:7948–7956

    Article  PubMed  CAS  Google Scholar 

  49. Persikov AV, Ramshaw JA, Kirkpatrick A, Brodsky B (2002) Peptide investigations of pairwise interactions in the collagen triple-helix. J Mol Biol 316:385–394

    Article  PubMed  CAS  Google Scholar 

  50. Fallas JA, Dong J, Tao YJ, Hartgerink JD (2012) Structural insights into charge pair interactions in triple helical collagen-like proteins. J Biol Chem 287:8039–8047

    Article  PubMed  CAS  Google Scholar 

  51. Persikov AV, Ramshaw JA, Kirkpatrick A, Brodsky B (2005) Electrostatic interactions involving lysine make major contributions to collagen triple-helix stability. Biochemistry 44:1414–1422

    Article  PubMed  CAS  Google Scholar 

  52. Yang W, Chan VC, Kirkpatrick A, Ramshaw JA, Brodsky B (1997) Gly-Pro-Arg confers stability similar to Gly-Pro-Hyp in the collagen triple-helix of host-guest peptides. J Biol Chem 272:28837–28840

    Article  PubMed  CAS  Google Scholar 

  53. Koide T, Nishikawa Y, Takahara Y (2004) Synthesis of heterotrimeric collagen models containing Arg residues in Y-positions and analysis of their conformational stability. Bioorg Med Chem Lett 14:125–128

    Article  PubMed  CAS  Google Scholar 

  54. Hudlicky M, M. aJM (1990) New stereospecific syntheses and x-ray diffraction structures of (−)-D-erythro- and (+)-L-threo-4-fluoroglutamic. Tetrahedron Lett 31:7403–7406

    Article  CAS  Google Scholar 

  55. Hudlicky M (1993) Stereospecific syntheses of all four stereoisomers of 4-fluoroglutamic acid. J Fluorine Chem 60:193–210

    Article  CAS  Google Scholar 

  56. Panasik N Jr, Eberhardt ES, Edison AS, Powell DR, Raines RT (1994) Inductive effects on the structure of proline residues. Int J Pept Protein Res 44:262–269

    Article  PubMed  CAS  Google Scholar 

  57. Kronenthal DR, Mueller RH, Kuester TP, Kissick TP, Johnson EJ (1990) Stereospecific friedel-crafts alkylation of benzene with 4-mesyloxy-L-prolines. A new synthesis of 4-phenylprolines. Tetrahedron Lett 31:1241–1244

    Article  CAS  Google Scholar 

  58. Gottlieb AA, Yoshimasa F, Undenfriend S, Witkop B (1965) Incorporation of cis- and trans-4-fluoro-L-prolines into proteins and hydroxylation of the trans isomer during collagen biosynthesis. Biochemistry 4:2507–2513

    Article  CAS  Google Scholar 

  59. Shirota FN, Nagasawa HT, Elberling JA (1977) Potential inhibitors of collagen biosynthesis. 5,5-Difluoro-DL-lysine and 5, 5-dimethyl-DL-lysine and their activation by lysyl-tRNA ligase. J Med Chem 20:1623–1627

    Article  PubMed  CAS  Google Scholar 

  60. Hart BP, Coward JK (1993) The synthesis of DL-3,3-Difluoroglutamic acid from a 3-oxoprolinol derivative. Tetrahedron Lett 34:4917–4920

    Article  CAS  Google Scholar 

  61. Avent AG, Bowler AN, Doyle PM, Marchand CM, Young DW (1992) Stereospecific synthesis of 4-fluoroglutamic acids. Tetrahedron Lett 33:1509–1512

    Article  CAS  Google Scholar 

  62. Demange L, Menez A, Dugave C (1998) Practical synthesis of Boc and Fmoc protected 4-fluoro and 4-difluoroprolines from trans-4-hydroxyproline. Tetrahedron Lett 39:1169–1172

    Article  CAS  Google Scholar 

  63. Tran TT, Patino N, Condom R, Frogier T, Guedj R (1997) Fluorinated peptides incorporating a 4-fluoroproline residue as potential inhibitors of HIV protease. J Fluorine Chem 82:125–130

    Article  CAS  Google Scholar 

  64. Malkar NB, Lauer-Fields JL, Borgia JA, Fields GB (2002) Modulation of triple-helical stability and subsequent melanoma cellular responses by single-site substitution of fluoroproline derivatives. Biochemistry 41:6054–6064

    Article  PubMed  CAS  Google Scholar 

  65. Martinez J, Tolle JC, Bodanszky M (1979) Side reactions in peptide synthesis. 12. Hydrogenolysis of the 9-fluorenylmethyloxycarbonyl group. J Org Chem 44:3596–3598

    Article  CAS  Google Scholar 

  66. Atherton E, Bury C, Sheppard RC, Williams BJ (1979) Stability of fluorenylemthoxycarbonylamino groups in peptide synthesis. Cleavage by hydrogenolysis and by dipolar aprotic solvents. Tetrahedron Lett 20:3041–3042

    Article  Google Scholar 

  67. Vnek V, Budesinsky M, Rinnová M, Rosenberg I (2009) Prolinol-based nucleoside phosphonic acids: new isosteric conformationally flexible nucleotide analogues. Tetrahedron 65:862–876

    Article  CAS  Google Scholar 

  68. Doi M, Nishi Y, Kiritoshi N, Iwata T, Nago M, Nakano H, Uchiyama S, Nakazawa T, Wakamiya T, Kobayashi Y (2002) Simple and efficient syntheses of Boc- and Fmoc-protected 4(R)- and 4(S)-fluoroproline solely from 4(R)-hydroxyproline. Tetrahedron 58:8453–8459

    Article  CAS  Google Scholar 

  69. Hodges JA, Raines RT (2003) Stereoelectronic effects on collagen stability: the dichotomy of 4-fluoroproline diastereomers. J Am Chem Soc 125:9262–9263

    Article  PubMed  CAS  Google Scholar 

  70. Bhowmick M, Sappidi RR, Fields GB, Lepore SD (2011) Efficient synthesis of Fmoc-protected phosphinic pseudodipeptides: building blocks for the synthesis of matrix metalloproteinase inhibitors. Biopolymers 96:1–3

    Article  PubMed  CAS  Google Scholar 

  71. Goodman M, Del Valle JR (2003) Asymmetric hydrogenations for the synthesis of Boc-protected 4-alkylprolinols and prolines. J Org Chem 68:3923–3931

    Article  PubMed  CAS  Google Scholar 

  72. Murakami Y, Nakano A, Yoshimatsu A, Uchitomi K, Mastsuda Y (1984) Characterization of molecular aggregates of peptide amphiphiles and kinetics of dynamic processes performed by single-walled vesicles. J Am Chem Soc 106:3613–3623

    Article  CAS  Google Scholar 

  73. Yu Y-C, Brendt P, Tirrell M, Fields GB (1996) Self-assembling amphiphiles for construction of protein molecular architecture. J Am Chem Soc 118:12515–12520

    Article  CAS  Google Scholar 

  74. Yu YC, Berndt P, Tirrell M, Fields GB (1998) Minimal lipidation stabilizes protein-like molecular architecture. J Am Chem Soc 120:9979–9987

    Article  CAS  Google Scholar 

  75. Pakalns T, Haverstick KL, Fields GB, Mccarthy JB, Mooradian DL, Tirrell M (1999) Cellular recognition of synthetic peptide amphiphiles in self-assembled monolayer films. Biomaterials 20:2265–2279

    Article  PubMed  CAS  Google Scholar 

  76. Forns P, Lauer-Fields JL, Gao S, Fields GB (2000) Induction of protein-like molecular architecture by monoalkyl hydrocarbon chains. Biopolymers 54:531–546

    Article  PubMed  CAS  Google Scholar 

  77. Borgia JA, Fields GB (2000) Chemical synthesis of proteins. Trends Biotechnol 18:243–251

    Article  PubMed  CAS  Google Scholar 

  78. Mammen M, Choi SK, Whitesides GM (1998) Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed 37:2754–2794

    Article  Google Scholar 

  79. García M, Alsina M, Reig F, Haro I (2000) Liposomes as vehicles for the presentation of a synthetic peptide containing an epitope of hepatitis A virus. Vaccine 18:276–283

    Article  Google Scholar 

  80. Gore T, Dori Y, Talmon Y, Tirrell M, Bianco-Peled H (2001) Self-assembly of model collagen peptide amphiphiles. Langmuir 17:5352–5360

    Article  CAS  Google Scholar 

  81. Malkar NB, Lauer-Fields JL, Juska D, Fields GB (2003) Characterization of peptide-amphiphiles possessing cellular activation sequences. Biomacromolecules 4:518–528

    Article  PubMed  CAS  Google Scholar 

  82. Fields GB, Lauer JL, Dori Y, Forns P, Yu YC, Tirrell M (1998) Protein-like molecular architecture: biomaterial applications for inducing cellular receptor binding and signal transduction. Biopolymers 47:143–151

    Article  PubMed  CAS  Google Scholar 

  83. Lauer-Fields JL, Tuzinski KA, Shimokawa K, Nagase H, Fields GB (2000) Hydrolysis of triple-helical collagen peptide models by matrix metalloproteinases. J Biol Chem 275:13282–13290

    Article  PubMed  CAS  Google Scholar 

  84. Lauer-Fields JL, Nagase H, Fields GB (2000) Use of Edman degradation sequence analysis and matrix-assisted laser desorption/ionization mass spectrometry in designing substrates for matrix metalloproteinases. J Chromatogr A 890:117–125

    Article  PubMed  CAS  Google Scholar 

  85. Lauer-Fields JL, Broder T, Sritharan T, Chung L, Nagase H, Fields GB (2001) Kinetic analysis of matrix metalloproteinase activity using fluorogenic triple-helical substrates. Biochemistry 40:5795–5803

    Article  PubMed  CAS  Google Scholar 

  86. Kusebauch U, Cadamuro SA, Musiol HJ, Moroder L, Renner C (2007) Photocontrol of the collagen triple helix: synthesis and conformational characterization of bis-cysteinyl collagenous peptides with an azobenzene clamp. Chemistry 13:2966–2973

    Article  PubMed  CAS  Google Scholar 

  87. Hojo H, Akamatsu Y, Yamauchi K, Kinoshita M, Miki S, Nakamura Y (1997) Synthesis and structural characterization of triple-helical peptides which mimic the ligand binding site of the human macrophage scavenger receptor. Tetrahedron 53:14263–14274

    Article  CAS  Google Scholar 

  88. Tanaka Y, Suzuki K, Tanaka T (1998) Synthesis and stabilization of amino and carboxy terminal constrained collagenous peptides. J Pept Res 51:413–419

    Article  PubMed  CAS  Google Scholar 

  89. Khew ST, Tong YW (2008) Template-assembled triple-helical peptide molecules: mimicry of collagen by molecular architecture and integrin-specific cell adhesion. Biochemistry 47:585–596

    Article  PubMed  CAS  Google Scholar 

  90. Fields CG, Lovdahl CM, Miles AJ, Hagen VL, Fields GB (1993) Solid-phase synthesis and stability of triple-helical peptides incorporating native collagen sequences. Biopolymers 33:1695–1707

    Article  PubMed  CAS  Google Scholar 

  91. Fields CG, Mickelson DJ, Drake SL, Mccarthy JB, Fields GB (1993) Melanoma cell adhesion and spreading activities of a synthetic 124-residue triple-helical “mini-collagen”. J Biol Chem 268:14153–14160

    PubMed  CAS  Google Scholar 

  92. Ottl J, Moroder L (1999) Disulfide-bridged heterotrimeric collagen peptides containing the collagenase cleavage site of collagen type I. Synthesis and conformational properties. J Am Chem Soc 121:653–661

    Article  CAS  Google Scholar 

  93. Ottl J, Gabriel D, Murphy G, Knauper V, Tominaga Y, Nagase H, Kroger M, Tschesche H, Bode W, Moroder L (2000) Recognition and catabolism of synthetic heterotrimeric collagen peptides by matrix metalloproteinases. Chem Biol 7:119–132

    Article  PubMed  CAS  Google Scholar 

  94. Ottl J, Battistuta R, Pieper M, Tschesche H, Bode W, Kuhn K, Moroder L (1996) Design and synthesis of heterotrimeric collagen peptides with a built-in cystine-knot. Models for collagen catabolism by matrix-metalloproteases. FEBS Lett 398:31–36

    Article  PubMed  CAS  Google Scholar 

  95. Muller JC, Ottl J, Moroder L (2000) Heterotrimeric collagen peptides as fluorogenic collagenase substrates: synthesis, conformational properties, and enzymatic digestion. Biochemistry 39:5111–5116

    Article  PubMed  CAS  Google Scholar 

  96. Sacca B, Fiori S, Moroder L (2003) Studies of the local conformational properties of the cell-adhesion domain of collagen type IV in synthetic heterotrimeric peptides. Biochemistry 42:3429–3436

    Article  PubMed  CAS  Google Scholar 

  97. Goodman M, Feng Y, Melacini G, Taulane JP (1996) A template-induced incipient collagen-like triple-helical structure. J Am Chem Soc 118:5156–5157

    Article  CAS  Google Scholar 

  98. Goodman M, Melacini G, And Feng Y (1996) Collagen-like triple helices incorporating peptoid residues. J Am Chem Soc 118:10928–10929

    Article  CAS  Google Scholar 

  99. Feng Y, Melacini G, Taulane JP, Goodman M (1996) Collagen-based structures containing the peptoid residue N-isobutylglycine (Nleu): synthesis and biophysical studies of Gly-Pro-Nleu sequences by circular dichroism, ultraviolet absorbance, and optical rotation. Biopolymers 39:859–872

    Article  PubMed  CAS  Google Scholar 

  100. Feng Y, Melacini G, Goodman M (1997) Collagen-based structures containing the peptoid residue N-isobutylglycine (Nleu): synthesis and biophysical studies of Gly-Nleu-Pro sequences by circular dichroism and optical rotation. Biochemistry 36:8716–8724

    Article  PubMed  CAS  Google Scholar 

  101. Feng Y, Melacini G, Taulane JP, Goodman M (1996) Acetyl-terminated and template-assembled collagen-based polypeptides composed of Gly-Pro-Hyp sequences. 2. Synthesis and conformational analysis by circular dichroism, ultraviolet absorbance, and optical rotation. J Am Chem Soc 118:10351–10358

    Article  CAS  Google Scholar 

  102. Kwak J, De Capua A, Locardi E, Goodman M (2002) TREN (Tris(2-aminoethyl)amine): an effective scaffold for the assembly of triple helical collagen mimetic structures. J Am Chem Soc 124:14085–14091

    Article  PubMed  CAS  Google Scholar 

  103. Rump ET, Rijkers DT, Hilbers HW, De Groot PG, Liskamp RM (2002) Cyclotriveratrylene (CTV) as a new chiral triacid scaffold capable of inducing triple helix formation of collagen peptides containing either a native sequence or Pro-Hyp-Gly repeats. Chemistry 8:4613–4621

    Article  PubMed  CAS  Google Scholar 

  104. Horng JC, Hawk AJ, Zhao Q, Benedict ES, Burke SD, Raines RT (2006) Macrocyclic scaffold for the collagen triple helix. Org Lett 8:4735–4738

    Article  PubMed  CAS  Google Scholar 

  105. Brask J, Jensen KJ (2001) Carboproteins: a 4-alpha-helix bundle protein model assembled on a D-galactopyranoside template. Bioorg Med Chem Lett 11:697–700

    Article  PubMed  CAS  Google Scholar 

  106. Thulstrup PW, Brask J, Jensen KJ, Larsen E (2005) Synchrotron radiation circular dichroism spectroscopy applied to metmyoglobin and a 4-alpha-helix bundle carboprotein. Biopolymers 78:46–52

    Article  PubMed  CAS  Google Scholar 

  107. Cai W, Kwok SW, Taulane JP, Goodman M (2004) Metal-assisted assembly and stabilization of collagen-like triple helices. J Am Chem Soc 126:15030–15031

    Article  PubMed  CAS  Google Scholar 

  108. Kinberger GA, Taulane JP, Goodman M (2006) Fe(III)-binding collagen mimetics. Inorg Chem 45:961–963

    Article  PubMed  CAS  Google Scholar 

  109. Pires MM, Chmielewski J (2009) Self-assembly of collagen peptides into microflorettes via metal coordination. J Am Chem Soc 131:2706–2712

    Article  PubMed  CAS  Google Scholar 

  110. Thakur S, Vadolas D, Germann HP, Heidemann E (1986) Influence of different tripeptides on the stability of the collagen triple helix II. An experimental approach with appropriate variations of a trimer model oligotripeptide. Biopolymers 25:1081–1086

    Article  PubMed  CAS  Google Scholar 

  111. Germann HP, Heidemann E (1988) A synthetic model of collagen: an experimental investigation of the triple-helix stability. Biopolymers 27:157–163

    Article  PubMed  CAS  Google Scholar 

  112. Fields CG, G B, Lauer JL, Miles AJ, Yu Y-C, Fields GB (1996) Solid-phase synthesis of triple-helical collagen-model peptides. Lett Peptide Sci 3:3–16

    Google Scholar 

  113. Barnes MJ, Knight CG, Farndale RW (1996) The use of collagen-based model peptides to investigate platelet-reactive sequences in collagen. Biopolymers 40:383–397

    Article  PubMed  CAS  Google Scholar 

  114. Morton LF, Peachey AR, Knight CG, Farndale RW, Barnes MJ (1997) The platelet reactivity of synthetic peptides based on the collagen III fragment alpha1(III)CB4. Evidence for an integrin alpha2beta1 recognition site involving residues 522–528 of the alpha1(III) collagen chain. J Biol Chem 272:11044–11048

    Article  PubMed  CAS  Google Scholar 

  115. Knight CG, Morton LF, Onley DJ, Peachey AR, Ichinohe T, Okuma M, Farndale RW, Barnes MJ (1999) Collagen-platelet interaction: Gly-Pro-Hyp is uniquely specific for platelet Gp VI and mediates platelet activation by collagen. Cardiovasc Res 41:450–457

    Article  PubMed  CAS  Google Scholar 

  116. Byrne C, Mcewan PA, Emsley J, Fischer PM, Chan WC (2011) End-stapled homo and hetero collagen triple helices: a click chemistry approach. Chem Commun (Camb) 47:2589–2591

    Article  CAS  Google Scholar 

  117. Henkel W, Vogl T, Echner H, Voelter W, Urbanke C, Schleuder D, Rauterberg J (1999) Synthesis and folding of native collagen III model peptides. Biochemistry 38:13610–13622

    Article  PubMed  CAS  Google Scholar 

  118. Cai W, Wong D, Kinberger GA, Kwok SW, Taulane JP, Goodman M (2007) Facile and efficient assembly of collagen-like triple helices on a TRIS scaffold. Bioorg Chem 35:327–337

    Article  PubMed  CAS  Google Scholar 

  119. Barth D, Kyrieleis O, Frank S, Renner C, Moroder L (2003) The role of cystine knots in collagen folding and stability, part II. Conformational properties of (Pro-Hyp-Gly)n model trimers with N- and C-terminal collagen type III cystine knots. Chemistry 9:3703–3714

    Article  PubMed  CAS  Google Scholar 

  120. Krishna OD, Kiick KL (2009) Supramolecular assembly of electrostatically stabilized, hydroxyproline-lacking collagen-mimetic peptides. Biomacromolecules 10:2626–2631

    Article  PubMed  CAS  Google Scholar 

  121. King DS, Fields CG, Fields GB (1990) A cleavage method which minimizes side reactions following Fmoc solid phase peptide synthesis. Int J Pept Protein Res 36:255–266

    Article  PubMed  CAS  Google Scholar 

  122. Fields CG, Fields GB (1993) Minimization of tryptophan alkylation following 9-fluorenylmethoxycarbonyl solid-phase peptide synthesis. Tetrahedron Lett 34:6661–6664

    Article  CAS  Google Scholar 

  123. Berndt P, Fields GB, Tirrell M (1995) Synthetic lipidation of peptides and amino acids: monolayer structure and properties. J Am Chem Soc 117:9515–9522

    Article  CAS  Google Scholar 

  124. Fields CG, Grab B, Lauer JL, Fields GB (1995) Purification and analysis of synthetic, triple-helical “minicollagens” by reversed-phase high-performance liquid chromatography. Anal Biochem 231:57–64

    Article  PubMed  CAS  Google Scholar 

  125. Grab B, Miles AJ, Furcht LT, Fields GB (1996) Promotion of fibroblast adhesion by triple-helical peptide models of type I collagen-derived sequences. J Biol Chem 271:12234–12240

    Article  PubMed  CAS  Google Scholar 

  126. Yu YC, Roontga V, Daragan VA, Mayo KH, Tirrell M, Fields GB (1999) Structure and dynamics of peptide-amphiphiles incorporating triple-helical proteinlike molecular architecture. Biochemistry 38:1659–1668

    Article  PubMed  CAS  Google Scholar 

  127. Chhabra SR, Hothi B, Evans DJ, White PD, Bycroft BW, Chan WC (1998) An appraisal of new variants of Dde amine protecting group for solid phase peptide synthesis. Tetrahedron Lett 39:1603–1606

    Article  CAS  Google Scholar 

  128. Rohwedder B, Mutti Y, Dumy P, Mutter M (1998) Hydrazinolysis of Dde: complete orthogonality with Aloc protecting groups. Tetrahedron Lett 39:1175–1178

    Article  CAS  Google Scholar 

  129. Kates SA, Daniels SB, Albericio F (1993) Automated allyl cleavage for continuous-flow synthesis of cyclic and branched peptides. Anal Biochem 212:303–310

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bhowmick, M., Fields, G.B. (2013). Stabilization of Collagen-Model, Triple-Helical Peptides for In Vitro and In Vivo Applications. In: Cudic, P. (eds) Peptide Modifications to Increase Metabolic Stability and Activity. Methods in Molecular Biology, vol 1081. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-652-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-652-8_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-651-1

  • Online ISBN: 978-1-62703-652-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics