Skip to main content

Combinatorial DNA Assembly Using Golden Gate Cloning

  • Protocol
  • First Online:
Synthetic Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1073))

Abstract

A basic requirement for synthetic biology is the availability of efficient DNA assembly methods. We have previously reported the development of Golden Gate cloning, a method that allows parallel assembly of multiple DNA fragments in a one-tube reaction. Golden Gate cloning can be used for different levels of construct assembly: from gene fragments to complete gene coding sequences, from basic genetic elements to full transcription units, and finally from transcription units to multigene constructs. We provide here a protocol for DNA assembly using Golden Gate cloning, taking as an example the level of assembly of gene fragments to complete coding sequences, a level of cloning that can be used to perform DNA shuffling. Such protocol requires the following steps: (1) selecting fusion sites within parental sequences (sites at which parental sequences will be recombined), (2) amplifying all DNA fragments by PCR to add flanking restriction sites, (3) cloning the amplified fragments in intermediate constructs, and (4) assembling all or selected sets of intermediate constructs in a compatible recipient vector using a one-pot restriction-ligation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ellis T, Adie T, Baldwin GS (2010) DNA assembly for synthetic biology: from parts to pathways and beyond. Integr Biol (Camb) 3:109–118

    Article  Google Scholar 

  2. Li MZ, Elledge SJ (2007) Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods 4:251–256

    Article  CAS  Google Scholar 

  3. Gibson DG, Benders GA et al (2008) One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome. Proc Natl Acad Sci U S A 105:20404–20409

    Article  CAS  Google Scholar 

  4. Shao Z, Zhao H, Zhao H (2009) DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res 37:e16

    Article  Google Scholar 

  5. Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One 3:e3647

    Article  Google Scholar 

  6. Engler C, Gruetzner R, Kandzia R, Marillonnet S (2009) Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One 4:e5553

    Article  Google Scholar 

  7. Lebedenko EN, Birikh KR, Plutalov OV, Berlin YA (1991) Method of artificial DNA splicing by directed ligation (SDL). Nucleic Acids Res 19:6757–6761

    Article  CAS  Google Scholar 

  8. Szybalski W, Kim SC, Hasan N, Podhajska AJ (1991) Class-IIS restriction enzymes—a review. Gene 100:13–26

    Article  CAS  Google Scholar 

  9. Berlin YA (1999) DNA splicing by directed ligation (SDL). Curr Issues Mol Biol 1:21–30

    CAS  Google Scholar 

  10. Lu Q (2005) Seamless cloning and gene fusion. Trends Biotechnol 23:199–207

    Article  CAS  Google Scholar 

  11. Weber E, Engler C, Gruetzner R, Werner S, Marillonnet S (2011) A modular cloning system for standardized assembly of multigene constructs. PLoS One 6:e16765

    Article  CAS  Google Scholar 

  12. Werner S, Engler C, Weber E, Gruetzner R, Marillonnet S (2012) Fast track assembly of multigene constructs using golden gate cloning and the MoClo system. Bioeng Bugs 3:38–43

    Article  Google Scholar 

  13. Sanjana NE, Cong L et al (2012) A transcription activator-like effector toolbox for genome engineering. Nat Protoc 7:171–192

    Article  CAS  Google Scholar 

  14. Morbitzer R, Elsaesser J, Hausner J, Lahaye T (2011) Assembly of custom TALE-type DNA binding domains by modular cloning. Nucleic Acids Res 39:5790–5799

    Article  CAS  Google Scholar 

  15. Cermak T, Doyle EL et al (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82

    Article  CAS  Google Scholar 

  16. Geißler R, Scholze H et al (2011) Transcriptional activators of human genes with programmable DNA-specificity. PLoS One 6:e19509

    Article  Google Scholar 

  17. Weber E, Gruetzner R et al (2011) Assembly of designer TAL effectors by golden gate cloning. PLoS One 6:e19722

    Article  CAS  Google Scholar 

  18. Horton RM, Ho SN et al (1990) Gene splicing by overlap extension. Biotechniques 8:528–535

    CAS  Google Scholar 

  19. Bolchi A, Ottonello S, Petrucco S (2005) A general one-step method for the cloning of PCR products. Biotechnol Appl Biochem 42:205–209

    Article  CAS  Google Scholar 

  20. Liu ZG, Schwartz LM (1992) An efficient method for blunt-end ligation of PCR products. Biotechniques 12:28–30

    Google Scholar 

  21. Kotera I, Nagai T (2008) A high-throughput and single-tube recombination of crude PCR products using a DNA polymerase inhibitor and type IIS restriction enzyme. J Biotechnol 137:1–7

    Article  CAS  Google Scholar 

  22. Sarrion-Perdigones A, Falconi EE et al (2011) GoldenBraid: an iterative cloning system for standardized assembly of reusable genetic modules. PLoS One 6:e21622

    Article  CAS  Google Scholar 

  23. Stemmer WP, Morris SK (1992) Enzymatic inverse PCR: a restriction site independent, single-fragment method for high-efficiency, site-directed mutagenesis. Biotechniques 13:214–220

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Stefan Werner and Dr. Ernst Weber for critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Engler, C., Marillonnet, S. (2013). Combinatorial DNA Assembly Using Golden Gate Cloning. In: Polizzi, K., Kontoravdi, C. (eds) Synthetic Biology. Methods in Molecular Biology, vol 1073. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-625-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-625-2_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-624-5

  • Online ISBN: 978-1-62703-625-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics