Skip to main content

Microwave-Assisted Solid-Phase Peptide Synthesis Using the Biotage Syro Wave

  • Protocol
  • First Online:
Peptide Synthesis and Applications

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1047))

Abstract

Fast and precise heating by microwave irradiation during solid-phase peptide synthesis (SPPS) can reduce reaction times as well as provide better purities and greater yields for the synthesis of difficult peptides. Microwave- assisted SPPS has proven to be a useful and reliable tool for the synthesis of peptides as well as small proteins. It is particularly well suited for sequences with a high propensity to form β-sheet-type structures and for sterically difficult couplings. In this protocol, conditions and detailed procedures are described for performing microwave-assisted SPPS using the Syro Wave™. Here we describe the synthesis of two difficult peptide sequences: the first is derived from the C-terminus of the MuLV CTL epitope, the second is a de novo designed peptide with a C-terminal alkyne.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bacsa B, Desai B, Dibó G, Kappe CO (2006) Rapid solid-phase peptide synthesis using thermal and controlled microwave irradiation. J Pept Sci 12:633–638

    Article  PubMed  CAS  Google Scholar 

  2. Brandt M, Gammeltoft S, Jensen KJ (2006) Microwave heating for solid-phase peptide synthesis: general evaluation and application to 15-mer phosphopeptides. Int J Pept Res Ther 12:349–357

    Article  CAS  Google Scholar 

  3. Erdélyi M, Gogoll A (2002) Rapid microwave-assisted solid-phase peptide synthesis. Synthesis 11:1592–1596

    Google Scholar 

  4. Matsushita T, Hinou H, Kurogochi M, Shimizu H, Nishimura S (2005) Rapid microwave-assisted solid-phase glycopeptide synthesis. Org Lett 7:877–880

    Article  PubMed  CAS  Google Scholar 

  5. Pedersen SL, Sørensen KK, Jensen KJ (2010) Semi-automated microwave-assisted SPPS: optimization of protocols and synthesis of difficult sequences. Biopolymers 94(2):206–212

    Article  PubMed  CAS  Google Scholar 

  6. Malik L, Tofteng AP, Pedersen SL, Sørensen KK, Jensen KJ (2010) Automated “X-Y” robot for peptide synthesis with microwave heating: application to difficult peptide sequences and protein domains. J Pept Sci 16:506–512

    PubMed  CAS  Google Scholar 

  7. Bacsa B, Kappe C (2007) Rapid solid-phase synthesis of a calmodulin-binding peptide using controlled microwave irradiation. Nat Protoc 2:2222–2227

    Article  PubMed  CAS  Google Scholar 

  8. Pedersen SL, Tofteng AP, Malik L, Jensen KJ (2012) Microwave heating in solid-phase peptide synthesis. Chem Soc Rev 41(5):1826–1844

    Article  PubMed  CAS  Google Scholar 

  9. Wohr T, Wahl F, Nefzi A, Rohwedder B, Sato T, Sun X, Mutter M (1996) Pseudo-prolines as a solubilizing, structure-disrupting protection technique in peptide synthesis. J Am Chem Soc 118:9218–9227

    Article  Google Scholar 

  10. Yamashiro D, Blake J, Hao Li C (1976) The use of trifluoroethanol for improved coupling in solid-phase peptide synthesis. Tetrahedron Lett 17:1469–1472

    Article  Google Scholar 

  11. Seebach D, Thaler A, Beck A (1989) Solubilization of peptides in non-polar organic solvents by the addition of inorganic salts: facts and implications. Helv Chim Acta 72:857–867

    Article  CAS  Google Scholar 

  12. Thaler A, Seebach D, Cardinaux F (1991) Lithium-salt effects in peptide synthesis. Part II. Improvement of degree of resin swelling and of efficiency of coupling in solid-phase synthesis. Helv Chim Acta 74:628–643

    Article  CAS  Google Scholar 

  13. Palasek S, Cox Z, Collins J (2007) Limiting racemization and aspartimide formation in microwave-enhanced Fmoc solid-phase peptide synthesis. J Pept Sci 13:143–148

    Article  PubMed  CAS  Google Scholar 

  14. Bacsa B, Horvati K, Bosze S, Andreae F, Kappe CO (2008) Solid-phase synthesis of difficult peptide sequences at elevated temperatures: a critical comparison of microwave and conventional heating technologies. J Org Chem 73:7532–7542

    Article  PubMed  CAS  Google Scholar 

  15. Dolling R, Beyermann M, Haenel J, Kernchen F, Krause E, Franke P, Brudel M, Bienert M (1994) Piperidine-mediated side product formation for Asp(OBut)-containing peptides. J Chem Soc Chem Commun 853–854.

    Google Scholar 

  16. Wade J, Mathieu M, Macris M, Tregear G (2000) Base-induced side reactions in Fmoc-solid phase peptide synthesis: minimization by use of piperazine as N-alpha-deprotection reagent. Lett Pep Sci 7:107–112

    CAS  Google Scholar 

  17. Coantic S, Subra G, Martinez J (2008) Microwave-assisted solid phase peptide synthesis on high loaded resins. Int J Pep Res Ther 14:143–147

    Article  CAS  Google Scholar 

  18. Bacsa B, Horváti K, Bosze S, Andreae F, Kappe CO (2008) Solid-phase synthesis of difficult peptide sequences at elevated temperatures: a critical comparison of microwave and conventional heating technologies. J Org Chem 73:7532–7542

    Article  PubMed  CAS  Google Scholar 

  19. Redemann T, Jung G (1996) In situ fluoride activation allows the preparation of peptides not accessible by routine synthesis protocols. In: Ramage R, Epton R (eds) Peptides, Proceedings of the 24th European Peptide Symposium, pp 749–750

    Google Scholar 

  20. Carpino LA, Krause E, Sferdean CD, Schümann M, Fabian H, Bienert M, Beyermann M (2004) Synthesis of “difficult” peptide sequences: application of a depsipeptide technique to the Jung-Redemann 10- and 26-mers and the amyloid peptide Ab(1-42). Tetrahedron Lett 45:7519–7523

    Article  CAS  Google Scholar 

  21. Ogihara NL, Weiss MS, Degrado WF, Eisenberg D (1997) The crystal structure of the designed trimeric coiled coil coil-VaLd: Implications for engineering crystals and supramolecular assemblies. Protein Sci 6:80–88

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Malik, L., Jensen, K.J. (2013). Microwave-Assisted Solid-Phase Peptide Synthesis Using the Biotage Syro Wave™. In: Jensen, K., Tofteng Shelton, P., Pedersen, S. (eds) Peptide Synthesis and Applications. Methods in Molecular Biology, vol 1047. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-544-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-544-6_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-543-9

  • Online ISBN: 978-1-62703-544-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics