Skip to main content

Fullerenol Nanoparticles: Toxicity and Antioxidant Activity

  • Protocol
  • First Online:
Oxidative Stress and Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1028))

Abstract

Fullerenes are a relatively new group of compounds and represent a class of sphere-shaped molecules made exclusively of carbon atoms. Since their discovery in 1985, many aspects of both fullerene and its analogues have been intensively studied to reveal their physical and chemical reactivity, as well as potential use in biological systems. Both in vitro and in vivo studies have shown that polyhydroxylated fullerene derivatives, fullerenol nanoform (C60(OH) n , n = 2–72), can be potential antioxidative agents in biological systems. This chapter represents a review of published studies of fullerenes’ biological activities with special accent on the most tested fullerenol nanoform C60(OH)24.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Djordjevic A, Bogdanovic G, Dobric S (2006) Fullerenes in biomedicine. J BUON 11:391–404

    CAS  Google Scholar 

  2. Injac R, Kocevar N, Strukelj B (2008) Fullerenol C60(OH)24 as potential drug. Farm Vest 59:257–262

    Google Scholar 

  3. Injac R, Strukelj B (2008) Recent advances in protection against doxorubicin-induced toxicity. Technol Cancer Res Treat 7:497–516

    CAS  Google Scholar 

  4. Injac R, Radic N, Govedarica B et al (2008) Bioapplication and activity of fullerenol C60(OH)24. Afr J Biotechnol 25:4940–4950

    Google Scholar 

  5. Deguchi S, Alargova RG, Tsujii K (2001) Stable dispersions of fullerenes, C-60 and C-70, in water. Preparation and characterization Langmuir 17:6013–6017

    CAS  Google Scholar 

  6. Makha M, Purich A, Raston CL et al (2006) Structural diversity of host-guest and intercalation complexes of fullerene C60. Eur J Inorg Chem 37:507–515

    Article  Google Scholar 

  7. Husebo LO, Sitharaman B, Furukawa T et al (2004) Fullerenols revisited as stable radical anions. J Am Chem Soc 126:12055–12064

    Article  CAS  Google Scholar 

  8. Brant JA, Labille J, Bottero J et al (2006) Characterizing the impact of preparation method on fullerene cluster structure and chemistry. Langmuir 22:3878–3885

    Article  CAS  Google Scholar 

  9. Gao Y, Tang Z, Watkins E et al (2005) Synthesis and characterization of amphiphilic fullerenes and their Langmuir–Blodgett films. Langmuir 21:1416–1423

    Article  CAS  Google Scholar 

  10. Brant JA, Labille J, Robichaud CO et al (2007) Fullerol cluster formation in aqueous solutions: implications for environmental release. J Colloid Interface Sci 314:281–288

    Article  CAS  Google Scholar 

  11. Vileno B, Sienkiewicz A, Lekka M et al (2004) In vitro assay of singlet oxygen generation in presence of water-soluble derivatives of C60. Carbon 42:1195–1198

    Article  CAS  Google Scholar 

  12. Zhao B, He Z, Bilsk PJ et al (2008) Pristine (C60) and hydroxylated [C60(OH)24] fullerene phototoxicity towards HaCaT keratinocytes: Type I vs Type II mechanisms. Chem Res Toxicol 21:1056–1063

    Article  CAS  Google Scholar 

  13. Nagano T, Arakane K, Ryu A et al (1994) Comparison of singlet oxygen production efficiency of C-60 with other photosensitizers, based on 1268-Nm emission. Chem Pharm Bull 42:2291–2294

    Article  CAS  Google Scholar 

  14. Sera N, Tokiwa H, Miyata N (1996) Mutagenicity of the fullerene C60 -generated singlet oxygen dependent formation of lipid peroxides. Carcinogenesis 17:2163–2169

    Article  CAS  Google Scholar 

  15. Nakanishi I, Ohkubo K, Fujita S et al (2002) Direct detection of superoxide anion generated in C-60-photosensitized oxidation of NADH and an analogue by molecular oxygen. J Chem Soc Perkin Trans 2:1829–1833

    Google Scholar 

  16. Nakanishi I, Fukuzumi S, Konishi T et al (2002) DNA cleavage via superoxide anion formed in photoinduced electron transfer from NADH to gamma-cyclodextrin-bicapped C-60 in an oxygen-saturated aqueous solution. J Phys Chem B 106:2372–2380

    Article  CAS  Google Scholar 

  17. Yamakoshi Y, Umezawa N, Ryu A et al (2003) Active oxygen species generated from photoexcited fullerene (C60) as potential medicines:O2 -• versus 1O2. J Am Chem Soc 125:12803–12809

    Article  CAS  Google Scholar 

  18. Tokuyama H, Yamago S, Nakamura E et al (1993) Photoinduced biochemical-activity of fullerene carboxylic-acid. J Am Chem Soc 115:7918–7919

    Article  CAS  Google Scholar 

  19. Markovic Z, Trajkovic V (2008) Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C60). Biomaterials 29:3561–3573

    Article  CAS  Google Scholar 

  20. Injac R, Perse M, Cerne M et al (2009) Protective effects of fullerenol C60(OH)24 against doxorubicin-induced cardiotoxicity and hepatotoxicity in rats with colorectal cancer. Biomaterials 30:1184–1196

    Article  CAS  Google Scholar 

  21. Injac R, Perse M, Obermajer N et al (2008) Potential hepatoprotective effects of fullerenol C60(OH)24 in doxorubicin-induced hepatotoxicity in rats with mammary carcinomas. Biomaterials 29:3451–3460

    Article  CAS  Google Scholar 

  22. Injac R, Perse M, Boskovic M et al (2008) Cardioprotective effects of fullerenol C60(OH)24 on a single dose doxorubicin-induced cardiotoxicity in rats with malignant neoplasm. Technol Cancer Res Treat 7:15–25

    CAS  Google Scholar 

  23. Injac R, Boskovic M, Perse M et al (2008) Acute doxorubicin nephrotoxicity in rats with malignant neoplasm can be successfully treated with fullerenol C60(OH)24 via suppression of oxidative stress. Pharmacol Rep 5:742–749

    Google Scholar 

  24. Injac R, Radic N, Govedarica B et al (2009) Acute doxorubicin pulmotoxicity in rats with malignant neoplasm is effectively treated with fullerenol C60(OH)24 through inhibition of oxidative stress. Pharmacol Rep 2:335–342

    Google Scholar 

  25. Djordjevic-Milic V, Djordjevic A, Dobric S et al (2006) Influence of fullerenol C60(OH)24 on doxorubicin induced cardiotoxicity in rats. Mater Sci Forum 518:525–529

    Article  CAS  Google Scholar 

  26. Djordjevic-Milic V, Stankov K, Injac R et al (2009) Activity of antioxidative enzymes in erythrocytes after a single dose administration of doxorubicin in rats pretreated with fullerenol C60(OH)24. Toxicol Mech Methods 19:24–28

    Article  Google Scholar 

  27. Injac R, Djordjevic A, Strukelj B (2008) Doxorubicin-induced myocardial failure in rats with malignant neoplasm: protective role of fullerenol C60(OH)24. Hem Ind 62:197–204

    Article  CAS  Google Scholar 

  28. Dragojevic-Simic V, Jacevic V, Dobric S et al (2011) Anti-inflammatory activity of fullerenol C60(OH)24 nano-particles in a model of acute inflammation in rats. Dig J Nanomater Bios 6:819–827

    Google Scholar 

  29. Djordjevic A, Canadanovic-Brunet J, Vojinovic-Miloradov M et al (2005) Antioxidant properties and hypothetical radical mechanism of fullerenol C60(OH)24. Oxid Commun 4:806–812

    Google Scholar 

  30. Mirkov S, Djordjevic A, Andric N et al (2004) Nitric oxide scavenging activity of polyhydroxylated fullerenol, C60(OH)24. Nitric Oxide 11:201–207

    Article  CAS  Google Scholar 

  31. Fileti EE, Rivelino R, de Brito Mota F et al (2008) Effects of hydroxyl group distribution on the reactivity, stability and optical properties of fullerenols. Nanotechnology 19:365703

    Article  Google Scholar 

  32. Chen YW, Hwang KC, Yen CC et al (2004) Fullerene derivatives protect against oxidative stress in RAW 264.7 cells and ischemia-reperfused lungs. Am J Physiol Regul Integr Comp Physiol 287:R21–R26

    Article  CAS  Google Scholar 

  33. Bogdanovic G, Kojic V, Djordjevic A et al (2004) Modulating activity of fullerol C60(OH)22 on doxorubicin-induced cytotoxicity. Toxicol In Vitro 18:629–637

    Article  CAS  Google Scholar 

  34. Lu LH, Lee YT, Chen HW et al (1998) The possible mechanism of the antiproliferative effects of fullerenol, polyhydroxylated C60 on vascular smooth muscle cells. Br J Pharmacol 123:1097–1102

    Article  CAS  Google Scholar 

  35. Kojic V, Jakimov D, Bogdanovic G et al (2005) Effects of fullerenol C60(OH)24 on cytotoxicity induced by antitumor drugs on human breast carcinoma cell lines. Mater Sci Forum 492:543–548

    Article  Google Scholar 

  36. Foley S, Crowley C, Smaihi M et al (2002) Cellular localization of a water soluble fullerene derivative. Biochem Biophys Res Commun 294:116–119

    Article  CAS  Google Scholar 

  37. Bergmeyer HU (1983) Methods of enzymatic analysis. Weinheim, Basel

    Google Scholar 

  38. Misra HP, Fridovich I (1972) The generation of superoxide radical during the autoxidation of hemoglobin. J Biol Chem 247:6960–6962

    CAS  Google Scholar 

  39. Beutler E (1984) Red cell metabolism. A Manual of Biochemical Methods, Grune & Stratton, New York

    Google Scholar 

  40. Niva Y, Iwai N (2006) Genotoxicity in cell lines induced by chronic exposure to water-soluble fullerenes using micronucleus test. Environ Health Prev Med 11:292–297

    Article  Google Scholar 

  41. Zhao Q, Li Y, Xu J et al (2005) Radioprotection by fullerenols of Stylonychia mytilus exposed to gamma-rays. Int J Radiat Biol 81:169–175

    Article  CAS  Google Scholar 

  42. Daroczi B, Kari G, McAleer MF et al (2006) In vivo radioprotection by the fullerene nanoparticle DF-1 as assessed in a zebrafish model. Clin Cancer Res 12:7086–7091

    Article  CAS  Google Scholar 

  43. Bogdanovic V, Stankov K, Icevic I et al (2008) Fullerenol C60(OH)24 effects on antioxidative enzymes activity in irradiated human erythroleukemia cell line. J Radiat Res 49:321–327

    Article  CAS  Google Scholar 

  44. Brant JA, Labile J, Robichaund CO et al (2007) Fullerol cluster formation in aqueous solutions: implications for environmental release. J Colloid Interface Sci 314:281–288

    Article  CAS  Google Scholar 

  45. Sayes CM, Gobin AM, Ausman KD et al (2005) Nano-C-60 cytotoxicity is due to lipid peroxidation. Biomaterials 26:7587–7595

    Article  CAS  Google Scholar 

  46. Isakovic A, Markovic Z, Todorovic-Markovic B et al (2006) Distinct cytotoxic mechanisms of pristine versus hydroxylated fullerene. Toxicol Sci 91:173–183

    Article  CAS  Google Scholar 

  47. Sayes C, Fortner J, Lyon D et al (2004) The differential cytotoxicity of water-soluble fullerenes. Nano Lett 4:1881–1887

    Article  CAS  Google Scholar 

  48. Yamawaki H, Iwai N (2006) Cytotoxicity of water-soluble fullerene in vascular endothelial cells. Am J Physiol Cell Physiol 290:C1495–C1502

    Article  CAS  Google Scholar 

  49. Ueng T-H, Kang J-J, Wang H-W et al (1997) Suppression of microsomal cytochrome P450-dependent monooxygenases and mitochondrial oxidative phosphorylation by fullerenol, a polyhydroxylated fullerene C60. Toxicol Lett 93:29–37

    Article  CAS  Google Scholar 

  50. Su YY, Xu JY, Shen PP et al (2010) Cellular uptake and cytotoxic evaluation of fullerenol in different cell lines. Toxicology 269:155–159

    Article  CAS  Google Scholar 

  51. Gelderman MP, Simakova O, Clogston JD et al (2008) Adverse effects of fullerenes on endothelial cells: fullerenol C60(OH)24 induced tissue factor and ICAM-1 membrane expression and apoptosis in vitro. Int J Nanomedicine 3:59–68

    CAS  Google Scholar 

  52. Burdon RH, Gill V (1993) Cellularly generated active oxygen species and HeLa cell proliferation. Free Radic Res Commun 19:203–213

    Article  CAS  Google Scholar 

  53. Wei YH, Lee HC (2002) Oxidative stress, mitochondrial DNA mutation, and impairment of antioxidant enzymes in aging. Exp Biol Med 227:671–682

    CAS  Google Scholar 

  54. Tagmatarchis N, Shinohara H (2001) Fullerenes in medicinal chemistry and their biological applications. Mini Rev Med Chem 1:339–348

    CAS  Google Scholar 

  55. Lai HS, Chen Y et al (2000) Free radical scavenging activity of fullerenol on grafts after small bowel transplantation in dogs. Transplant Proc 32:1272–1274

    Article  CAS  Google Scholar 

  56. Lai HS, Chen WJ et al (2000) Free radical scavenging activity of fullerenol on the ischemia-reperfusion intestine in dogs. World J Surg 24:450–454

    Article  CAS  Google Scholar 

  57. Zimmermann C, Winnefeld K et al (2004) Antioxidant status in acute stroke patients and patients at stroke risk. Eur Neurol 51:157–161

    Article  CAS  Google Scholar 

  58. Johnson-Lyles DN, Peifley K, Lockett S et al (2010) Fullerenol cytotoxicity in kidney cells is associated with cytoskeleton disruption, autophagic vacuole accumulation, and mitochondrial dysfunction. Toxicol Appl Pharmacol 248:249–258

    Article  CAS  Google Scholar 

  59. Buege AL, Aust DS (1978) Methods in enzymology. Academic, New York

    Google Scholar 

  60. Trajkovic S, Dobric S, Djordjevic A et al (2005) Radioprotective efficiency of fullerenol in irradiated mice. Mater Sci Forum 494:549–554

    Article  CAS  Google Scholar 

  61. Trajkovic S, Dobric S, Jacevic V et al (2007) Tissue-protective effects of fullerenol C60(OH)24 and amifostine in irradiated rats. Colloids Surf B Biointerfaces 58:39–43

    Article  CAS  Google Scholar 

  62. Icevic I, Vukmirovic S, Srdjenovic B et al (2011) Protective effects of orally applied fullerenol nanoparticles in rats after a single dose of doxorubicin. Hem Ind 65:329–337

    Article  CAS  Google Scholar 

  63. Maksim T, Djokic D, Jankovic D et al (2007) Comparison of some physico-chemical parameters and biological behaviour of fullerenol labelled with technetium-99 m. J Optoelectron Adv Mater 9:2571–2577

    Google Scholar 

  64. Zhu J, Ji Z, Wang J et al (2008) Tumor-inhibitory effect and immunomodulatory activity of fullerenol C60(OH)x. Small 4:1168–1175

    Article  CAS  Google Scholar 

  65. Wu XA, Yang ST, Wang HF et al (2010) Influences of the size and hydroxyl number of fullerenes/fullerenols on their interactions with proteins. J Nanosci Nanotechnol 10:6298–6304

    Article  CAS  Google Scholar 

  66. Jiao F, Liu Y, Qu Y et al (2010) Studies on anti-tumor and antimetastatic activities of fullerenol in a mouse breast cancer model. Carbon 48:2231–2243

    Article  CAS  Google Scholar 

  67. Xu J-Y, Han K, Li S-X et al (2009) Pulmonary responses to polyhydroxylated fullerenols, C60(OH)x. J Appl Toxicol 29:578–584

    Article  CAS  Google Scholar 

  68. Chaudhuri P, Paraskar A, Soni S et al (2009) Fullerenol cytotoxic conjugates for cancer chemotherapy. ACS Nano 3:2505–2514

    Article  CAS  Google Scholar 

  69. Liang X-J, Chen C, Zhao Y et al (2008) Biopharmaceutics and therapeutic potential of engineered nanomaterials. Curr Drug Metab 9:697–709

    Article  CAS  Google Scholar 

  70. Wang J, Chen C, Li B et al (2006) One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. Biochem Pharmacol 71:872–881

    Article  CAS  Google Scholar 

  71. Watanabe T, Ichikawa H, Fukumori Y (2002) Tumor accumulation of gadolinium in lipid-nanoparticles intravenously injected for neutron-capture therapy of cancer. Eur J Pharm Biopharm 54:119–124

    Article  CAS  Google Scholar 

  72. Mikawa M, Kato H, Okumura M et al (2001) Paramagnetic water-soluble metallofullerenes having the highest relaxivity for MRI contrast agents. Bioconjug Chem 12:510–514

    Article  CAS  Google Scholar 

  73. Sies H (1999) Glutathione and its role in cellular functions. Free Radic Biol Med 27:916–921

    Article  CAS  Google Scholar 

  74. Satoh M, Takayanagi I (2006) Pharmacological Studies on Fullerene (C60), a novel carbon allotrope, and Its derivatives. J Pharmacol Sci 100:513–518

    Article  CAS  Google Scholar 

  75. Bossi S, Da Ros T, Spalluto G et al (2003) Fullerene derivatives: an attractive tool for biological applications. Eur J Med Chem 38:913–923

    Article  Google Scholar 

  76. Deguchi S, Mukai SA, Tsudome M et al (2006) Facile generation of fullerene nanoparticles by hand-grinding. Adv Mater 18:729–732

    Article  CAS  Google Scholar 

  77. Brettreich M, Hirsch A (1998) A highly water-soluble dendro[60]fullerene. Tetrahedron Lett 39:2731–2734

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work received partial financial support from the Slovenian Research Agency, Ljubljana, Slovenia, grant No.: P4-0127.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Injac, R., Prijatelj, M., Strukelj, B. (2013). Fullerenol Nanoparticles: Toxicity and Antioxidant Activity. In: Armstrong, D., Bharali, D. (eds) Oxidative Stress and Nanotechnology. Methods in Molecular Biology, vol 1028. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-475-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-475-3_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-474-6

  • Online ISBN: 978-1-62703-475-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics