Skip to main content

Methods to Examine the Impact of Nonsynonymous SNPs on Protein Degradation and Function of Human ABC Transporter

  • Protocol
  • First Online:
Pharmacogenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1015))

Abstract

Clinical studies have strongly suggested that genetic polymorphisms and/or mutations of certain ATP-binding cassette (ABC) transporter genes might be regarded as significant factors affecting patients’ responses to medication and/or the risk of diseases. In the case of ABCG2, certain single nucleotide polymorphisms (SNPs) in the encoding gene alter the substrate specificity and/or enhance endoplasmic reticulum-associated degradation (ERAD) of the de novo synthesized ABCG2 protein via the ubiquitin-mediated proteasomal proteolysis pathway. Hitherto accumulated clinical data imply that several nonsynonymous SNPs affect the ABCG2-mediated clearance of drugs or cellular metabolites, although some controversies still exist. Therefore, we recently developed high-speed functional screening and ERAD of ABC transporters so as to evaluate the effect of genetic polymorphisms on their function and protein expression levels in vitro. In this chapter we present in vitro experimental methods to elucidate the impact of nonsynonymous SNPs on protein degradation of ABCG2 as well as on its transport function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Evans WE, Johnson JA (2001) Pharmacogenomics: the inherited basis for interindividual differences in drug response. Annu Rev Genomics Hum Genet 2:9–39

    Article  PubMed  CAS  Google Scholar 

  2. Evans WE, Relling MV (1999) Pharmacoge-nomics: translating functional genomics into rational therapeutics. Science 286:487–491

    Article  PubMed  CAS  Google Scholar 

  3. Kroetz DL, Yee SW, Giacomini GK (2010) The pharmacogenomics of membrane transporters project: research at the interface of genomics and transporter pharmacology. Clin Pharmacol Ther 87:109–116

    Article  PubMed  CAS  Google Scholar 

  4. Kim RB (2002) Pharmacogenetics of CYP enzymes and drug transporters: remarkable recent advances. Adv Drug Deliv Rev 54:1241–1242

    Article  PubMed  CAS  Google Scholar 

  5. Ishikawa T, Tsuji A, Inui K et al (2004) The genetic polymorphism of drug transporters: functional analysis approaches. Pharmacogenomics 5:67–99

    Article  PubMed  CAS  Google Scholar 

  6. Nakagawa H, Toyoda Y, Wakabayashi-Nakao K et al (2011) Ubiquitin-mediated proteasomal degradation of ABC transporters: a new aspect of genetic polymorphisms and clinical impacts. J Pharm Sci 100:3602–3619

    Article  PubMed  CAS  Google Scholar 

  7. Ellgaard L, Molinari M, Helenius A (1999) Setting the standards: quality control in the secretory pathway. Science 286:1882–1888

    Article  PubMed  CAS  Google Scholar 

  8. Mori K (2000) Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 101:451–454

    Article  PubMed  CAS  Google Scholar 

  9. Hampton RY (2002) ER-associated degradation in protein quality control and cellular regulation. Curr Opin Cell Biol 14:476–482

    Article  PubMed  CAS  Google Scholar 

  10. Kleizen B, Braakman I (2004) Protein folding and quality control in the endoplasmic reticulum. Curr Opin Cell Biol 16:343–349

    Article  PubMed  CAS  Google Scholar 

  11. Sauer B (1994) Site-specific recombination: developments and applications. Curr Opin Biotechnol 5:521–527

    Article  PubMed  CAS  Google Scholar 

  12. Gronostajski RM, Sadowski PD (1985) Determination of DNA sequences essential for FLP-mediated recombination by a novel method. J Biol Chem 260:12320–12327

    PubMed  CAS  Google Scholar 

  13. Jayaram M (1985) Two-micrometer circle site-specific recombination: the minimal substrate and the possible role of flanking sequences. Proc Natl Acad Sci USA 82:5875–5879

    Article  PubMed  CAS  Google Scholar 

  14. Senecoff JF, Bruckner RC, Cox MM (1985) The FLP recombinase of the yeast 2-micron plasmid: characterization of its recombination site. Proc Natl Acad Sci USA 82:7270–7274

    Article  PubMed  CAS  Google Scholar 

  15. Andrews BJ, Proteau GA, Beatty LG et al (1985) The FLP recombinase of the 2 micron circle DNA of yeast: interaction with its target sequences. Cell 40:795–803

    Article  PubMed  CAS  Google Scholar 

  16. Boshart M, Weber F, Jahn G et al (1985) A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell 41:521–530

    Article  PubMed  CAS  Google Scholar 

  17. Nelson JA, Reynolds-Kohler C, Smith BA (1987) Negative and positive regulation by a short segment in the 5'-flanking region of the human cytomegalovirus major immediate-early gene. Mol Cell Biol 7:4125–4129

    PubMed  CAS  Google Scholar 

  18. Andersson S, Davis DL, Dahlback H et al (1989) Cloning, structure, and expression of the mitochondrial cytochrome P-450 sterol 26-hydroxylase, a bile acid biosynthetic enzyme. J Biol Chem 264:8222–8229

    PubMed  CAS  Google Scholar 

  19. Gritz L, Davies J (1983) Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae. Gene 25:179–188

    Article  PubMed  CAS  Google Scholar 

  20. Broach JR, Hicks JB (1980) Replication and recombination functions associated with the yeast plasmid, 2 mu circle. Cell 21:501–508

    Article  PubMed  CAS  Google Scholar 

  21. Broach JR, Guarascio VR, Jayaram M (1982) Recombination within the yeast plasmid 2 mu circle is site-specific. Cell 29:227–234

    Article  PubMed  CAS  Google Scholar 

  22. Argos P, Landy A, Abremski K et al (1986) The integrase family of site-specific recombinases: regional similarities and global diversity. EMBO J 5:433–440

    PubMed  CAS  Google Scholar 

  23. Craig NL (1988) The mechanism of conservative site-specific recombination. Annu Rev Genet 22:77–105

    Article  PubMed  CAS  Google Scholar 

  24. Buchholz F, Ringrose L, Angrand PO et al (1996) Different thermostabilities of FLP and Cre recombinases: implications for applied site-specific recombination. Nucleic Acids Res 24:4256–4262

    Article  PubMed  CAS  Google Scholar 

  25. Mitomo H, Kato R, Ito A et al (2003) A functional study on polymorphism of the ATP-binding cassette transporter ABCG2: critical role of arginine-482 in methotrexate transport. Biochem J 373:767–774

    Article  PubMed  CAS  Google Scholar 

  26. Tamura A, Wakabayashi K, Onishi Y et al (2006) Genetic polymorphisms of human ABC transporter ABCG2: development of the standard method for functional validation of SNPs by using the Flp recombinase system. J Exp Ther Oncol 6:1–11

    PubMed  CAS  Google Scholar 

  27. Wakabayashi-Nakao K, Tamura A, Koshiba S et al (2010) Production of cells with targeted integration of gene variants of human ABC transporter for stable and regulated expression using the Flp recombinase system. Methods Mol Biol 648:139–159

    Article  PubMed  CAS  Google Scholar 

  28. Tamura A, Wakabayashi K, Onishi Y et al (2007) Re-evaluation and functional classification of non-synonymous single nucleotide polymorphisms of the human ATP-binding cassette transporter ABCG2. Cancer Sci 98:231–239

    Article  PubMed  CAS  Google Scholar 

  29. Ishikawa T, Sakurai A, Kanamori Y et al (2005) High-speed screening of human ATP-binding cassette transporter function and genetic polymorphisms: new strategies in pharmacogenomics. Methods Enzymol 400:485–510

    Article  PubMed  CAS  Google Scholar 

  30. Tamura A, Watanabe M, Saito H et al (2006) Functional validation of the genetic polymorphisms of human ATP-binding cassette (ABC) transporter ABCG2: identification of alleles that are defective in porphyrin transport. Mol Pharmacol 70:287–296

    PubMed  CAS  Google Scholar 

  31. Ishikawa T, Tamura A, Saito H et al (2005) Pharmacogenomics of the human ABC transporter ABCG2: from functional evaluation to drug molecular design. Naturwissenschaften 92:451–463

    Article  PubMed  CAS  Google Scholar 

  32. Nakagawa H, Tamura A, Wakabayashi K et al (2008) Ubiquitin-mediated proteasomal degradation of non-synonymous SNP variants of human ABC transporter ABCG2. Biochem J 411:623–631

    Article  PubMed  CAS  Google Scholar 

  33. Wang P, Hammer DA, Granados RR (1997) Binding and fusion of Autographa californica nucleopolyhedrovirus to cultured insect cells. J Gen Virol 78:3081–3089

    PubMed  CAS  Google Scholar 

  34. Blissard GW, Wenz JR (1992) Baculovirus gp64 envelope glycoprotein is sufficient to mediate pH-dependent membrane fusion. J Virol 66:6829–6835

    PubMed  CAS  Google Scholar 

  35. Lanir LM, Volkman LE (1998) Actin binding and nucleation by Autographa californica M nucleopolyhedrovirus. Virology 243:167–177

    Article  Google Scholar 

  36. Whittaker GR, Helenius A (1998) Nuclear import and export of viruses and virus genomes. Virology 246:1–23

    Article  CAS  Google Scholar 

  37. An R, Hagiya Y, Tamura A et al (2009) Cellular phototoxicity evoked through the inhibition of human ABC transporter ABCG2 by cyclin-dependent kinase inhibitors in vitro. Pharm Res 26:449–458

    Article  PubMed  CAS  Google Scholar 

  38. Saito H, Hirano H, Nakagawa H et al (2006) A new strategy of high-speed screening and quantitative structure-activity relationship analysis to evaluate human ATP-binding cassette transporter ABCG2-drug interactions. J Pharmacol Exp Ther 317:1114–1124

    Article  PubMed  CAS  Google Scholar 

  39. Saito H, Hirano H, Shin W et al (2009) Technical pitfalls and improvements in high-speed screening and QSAR analysis to predict durg–drug interactions of ABC transporter ABCB11 (bile salt export pump). AAPS J 11:581–589

    Article  PubMed  CAS  Google Scholar 

  40. Elbein AD, Pan YT, Pastuszak I et al (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13:17R–27R

    Article  PubMed  CAS  Google Scholar 

  41. Furuki T, Oku K, Sakurai M (2009) Thermodynamic, hydration and structural characterization of alpha, alpha-trehalose. Front Biosci 14:3523–3535

    Article  PubMed  CAS  Google Scholar 

  42. Guo N, Puhlev I, Brown DR et al (2008) Trehalose expression confers desiccation tolerance on human cells. Nat Biotechnol 18:168–171

    Article  Google Scholar 

  43. Deghan A, Köttgen A, Yang Q et al (2008) Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet 372:1953–1961

    Article  Google Scholar 

  44. Kolz M, Johnson T, Sanna S et al (2009) Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet 5:e1000504

    Article  PubMed  Google Scholar 

  45. Stark K, Reinhard W, Grassi M et al (2009) Common polymorphisms influencing serum uric acid levels contribute to susceptibility to gout, but not to coronary artery disease. PLoS One 4:e7729

    Article  PubMed  Google Scholar 

  46. Woodward O, Köttgen A, Coresh J et al (2009) Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc Natl Acad Sci USA 106:10338–10342

    Article  PubMed  CAS  Google Scholar 

  47. Matsuo H, Takada T, Ichida K et al (2009) Common defects of ABCG2, a high-capacity urate exporter, cause gout. A function-based genetic analysis in a Japanese population. Sci Transl Med 1:5ra11

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The study performed in the authors’ laboratory was supported by the NEDO International Joint Research Grant program “International standardization of functional analysis technology for genetic polymorphisms of drug transporters” as well as a Grant-in-Aid for Scientific Research (A) (No. 18201041) and Grants for Exploratory Research (No. 19659136 and No. 23650619) from the Japanese Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ishikawa, T., Wakabayashi-Nakao, K., Nakagawa, H. (2013). Methods to Examine the Impact of Nonsynonymous SNPs on Protein Degradation and Function of Human ABC Transporter. In: Innocenti, F., van Schaik, R. (eds) Pharmacogenomics. Methods in Molecular Biology, vol 1015. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-435-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-435-7_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-434-0

  • Online ISBN: 978-1-62703-435-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics