Skip to main content

Experimental Traumatic Spinal Cord Injury

  • Protocol
  • First Online:
Tissue-Protective Cytokines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 982))

Abstract

Animal models are important to develope therapies for individuals suffering from spinal cord injuries. For this purpose, rats are commonly preferred. In sharp injury models, spinal cord is completely or incompletely cut to assess axonal regeneration. On the other hand, spinal cord is compressed or contused to mimic the human injury in blunt injury models for understanding as well as managing the secondary pathophysiologic processes following injury. Especially, contusions are thought to be biomechanically similar to vertebral fractures and/or dislocations and thus provide the most realistic experimental setting in which to test potential neuroprotective and regenerative strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fernandez E et al (1991) Experimental studies on spinal cord injuries in the last fifteen years. Neurol Res 13:138–159

    PubMed  CAS  Google Scholar 

  2. Cheng H, Cao Y, Olson L (1996) Spinal cord repair in adult paraplegic rats: partial restoration of hind limb function. Science 273:510–513

    Article  PubMed  CAS  Google Scholar 

  3. Gruner JA (1992) A monitored contusion model of spinal cord injury in the rat. J Neurotrauma 9:123–126

    Article  PubMed  CAS  Google Scholar 

  4. Stokes BT (1992) Experimental spinal cord injury: a dynamic and verifiable injury device. J Neurotrauma 9:129–131

    Article  PubMed  CAS  Google Scholar 

  5. Jakeman LB et al (2000) Traumatic spinal cord injury produced by controlled contusion in mouse. J Neurotrauma 17:299–319

    Article  PubMed  CAS  Google Scholar 

  6. Kobayashi NR et al (1997) BDNF and NT-4/5 prevent atrophy of rat rubrospinal neurons after cervical axotomy, stimulate GAP-43 and Talpha1-tubulin mRNA expression, and promote axonal regeneration. J Neurosci 17:9583–9595

    PubMed  CAS  Google Scholar 

  7. Schwartz G, Fehlings MG (2001) Evaluation of the neuroprotective effects of sodium channel blockers after spinal cord injury: improved behavioral and neuroanatomical recovery with riluzole. J Neurosurg 94:245–256

    PubMed  CAS  Google Scholar 

  8. Blight AR (1992) Spinal cord injury models: neurophysiology. J Neurotrauma 9:147–149

    Article  PubMed  CAS  Google Scholar 

  9. Holmes GM et al (1998) External anal sphincter hyperreflexia following spinal transection in the rat. J Neurotrauma 15:451–457

    Article  PubMed  CAS  Google Scholar 

  10. Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12:1–21

    Article  PubMed  CAS  Google Scholar 

  11. Bresnahan JC et al (1987) A behavioral and anatomical analysis of spinal cord injury produced by a feedback-controlled impactiondevice. Exp Neurol 95:548–570

    Article  PubMed  CAS  Google Scholar 

  12. Kunkel-Bagden E, Dai HN, Bregman BS (1993) Methods to assess the development and recovery of locomotor function after spinal cord injury in rats. Exp Neurol 119:153–164

    Article  PubMed  CAS  Google Scholar 

  13. Soblosky JS et al (1997) Ladder beam and camera video recording system for evaluating forelimb and hindlimb deficits after sensorimotor cortex injury in rats. J Neurosci Methods 78:75–83

    Article  PubMed  CAS  Google Scholar 

  14. Hicks SP, D’Amato CJ (1975) Motor-sensory cortex-corticospinal system and developing locomotion and placing in rats. Am J Anat 143:1–42

    Article  PubMed  CAS  Google Scholar 

  15. Rivlin AS, Tator CH (1977) Objective clinical assessment of motor function after experimental spinal cord injury in the rat. J Neurosurg 47:577–581

    Article  PubMed  CAS  Google Scholar 

  16. Z’Graggen WJ et al (1998) Functional recovery and enhanced corticofugal plasticity after unilateral pyramidal tract lesion and blockade of myelin-associated neurite growth inhibitors in adult rats. J Neurosci 18:4744–4757

    PubMed  Google Scholar 

  17. Cheng H et al (1997) Gait analysis of adult paraplegic rats after spinal cord repair. Exp Neurol 148:544–557

    Article  PubMed  CAS  Google Scholar 

  18. Belanger M et al (1996) A comparison of treadmill locomotion in adult cats before and after spinal transection. J Neurophysiol 76:471–491

    PubMed  CAS  Google Scholar 

  19. de Leon RD et al (1998) Full weight-bearing hindlimb standing following stand training in the adult spinal cat. J Neurophysiol 80:83–91

    PubMed  Google Scholar 

  20. de Leon RD et al (1998) Locomotor capacity attributable to step training versus spontaneous recovery after spinalization in adult cats. J Neurophysiol 79:1329–1340

    PubMed  Google Scholar 

  21. Chau C, Barbeau H, Rossignol S (1998) Early locomotor training with clonidine in spinal cats. J Neurophysiol 79:392–409

    PubMed  CAS  Google Scholar 

  22. Chau C, Barbeau H, Rossignol S (1998) Effects of intrathecal alpha 1- and alpha 2-noradrenergic agonists and norepinephrine on locomotion in chronic spinal cats. J Neurophysiol 79:2941–2963

    PubMed  CAS  Google Scholar 

  23. Ducker TB, Hamit HF (1969) Experimental treatments of acute spinal cord injury. J Neurosurg 30:693–697

    PubMed  CAS  Google Scholar 

  24. Ford RW (1983) A reproducible spinal cord injury model in the cat. J Neurosurg 59: 268–275

    PubMed  CAS  Google Scholar 

  25. Griffiths IR (1976) Spinal cord blood flow after acute experimental cord injury in dogs. J Neurol Sci 27:247–259

    PubMed  CAS  Google Scholar 

  26. Yeo JD et al (1975) The experimental contusion injury of the spinal cord in sheep. Paraplegia 12:279–298

    PubMed  CAS  Google Scholar 

  27. Noyes DH (1987) Correlation between parameters of spinal cord impact and resultant injury. Exp Neurol 95:535–547

    PubMed  CAS  Google Scholar 

  28. Noyes DH (1987) Electromechanical impactor for producing experimental spinal cord injury in animals. Med Biol Eng Comput 25: 335–340

    PubMed  CAS  Google Scholar 

  29. Rivlin AS, Tator CH (1978) Effect of duration of acute spinal cord compression in a new acute cord injury model in the rat. Surg Neurol 10:38–43

    PubMed  CAS  Google Scholar 

  30. Erbayraktar S et al (2003) Asialoerythropoietin is a nonerythropoietic cytokine with broad neuroprotective activity in vivo. Proc Natl Acad Sci U S A 27:6741–6746

    PubMed  CAS  Google Scholar 

  31. Fehlings MG, Tator CH (1992) The effect of direct current field polarity on recovery after acute experimental spinal cord injury. Brain Res 579:32–42

    PubMed  CAS  Google Scholar 

  32. Fehlings MG, Tator CH, Linden RD (1989) The relationships among the severity of spinal cord injury, motor and somatosensory evoked potentials, and spinal cord blood flow. Electroencephalogr Clin Neurophysiol 74:241–259

    PubMed  CAS  Google Scholar 

  33. Leist M (2004) Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science 305:239–242

    PubMed  CAS  Google Scholar 

  34. Guha A et al (1987) Decompression of the spinal cord improves recovery after acute experimental spinal cord compression injury. Paraplegia 25:324–339

    PubMed  CAS  Google Scholar 

  35. Celik M et al (2002) Erytropoietin prevents motor neuron apoptosis and neurological disability in experimental spinal cord ischemic injury. Proc Natl Acad Sci U S A 99:2258–2263

    PubMed  CAS  Google Scholar 

  36. Gorio A et al (2002) Recombinant human erythropoietin counteracts secondary injury and markedly enhances neurological recovery from experimental spinal cord trauma. Proc Natl Acad Sci U S A 99:9450–9455

    Article  PubMed  CAS  Google Scholar 

  37. Grasso G et al (2006) Amelioration of spinal cord compressive injury by pharmacological preconditioning with erythropoietin and a nonerythropoietic erythropoietin derivative. J Neurosurg Spine 4:310–318

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Erbayraktar, Z., Gökmen, N., Yılmaz, O., Erbayraktar, S. (2013). Experimental Traumatic Spinal Cord Injury. In: Ghezzi, P., Cerami, A. (eds) Tissue-Protective Cytokines. Methods in Molecular Biology, vol 982. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-308-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-308-4_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-307-7

  • Online ISBN: 978-1-62703-308-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics