Skip to main content

Differential Scanning Calorimetry of Protein–Lipid Interactions

  • Protocol
  • First Online:
Lipid-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 974))

Abstract

Differential scanning calorimetry (DSC) is a highly sensitive non-perturbing technique for measuring the thermodynamic properties of thermally induced transitions. This technique is particularly useful for the characterization of lipid/protein interactions. This chapter presents an introduction to DSC instrumentation, basic theory, and methods and describes DSC applications for characterizing protein effects on model lipid membranes. Examples of the use of DSC for the evaluation of protein effects on modulation of membrane domains and membrane stability are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Privalov PL, Potekhin SA (1986) Scanning microcalorimetry in studying temperature-induced changes in proteins. Methods Enzymol 131:4–51

    Article  PubMed  CAS  Google Scholar 

  2. Privalov PL, Dragan AI (2007) Microcalorimetry of biological macromolecules. Biophys Chem 126:16–24

    Article  PubMed  CAS  Google Scholar 

  3. McElhaney RN (1982) The use of differential scanning calorimetry and differential thermal analysis in studies of model and biological membranes. Chem Phys Lipids 30:229–259

    Article  PubMed  CAS  Google Scholar 

  4. McElhaney RN (1986) Differential scanning calorimetric studies of lipid-protein interactions in model membrane systems. Biochim Biophys Acta 864:361–421

    Article  PubMed  CAS  Google Scholar 

  5. Demetzos C (2008) Differential scanning calorimetry (DSC): a tool to study the thermal behavior of lipid bilayers and liposome stability. J Liposome Res 18:159–173

    Article  PubMed  CAS  Google Scholar 

  6. Lewis RN, Mannock DA, McElhaney RN (2007) Differential scanning calorimetry in the study of lipid phase transitions in model and biological membranes: practical considerations. Methods Mol Biol 400:171–195

    Article  PubMed  CAS  Google Scholar 

  7. Biltonen RL, Lichtenberg D (1993) The use of differential scanning calorimetry as a tool to characterize liposome preparations. Chem Phys Lipids 64:129–142

    Article  CAS  Google Scholar 

  8. Seddon AM, Curnow P, Booth PJ (2004) Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta 1666:105–117

    Article  PubMed  CAS  Google Scholar 

  9. Cruz A, Casals C, Keough KM, Pérez-Gil J (1997) Different modes of interaction of pulmonary surfactant protein SP-B in phosphatidylcholine bilayers. Biochem J 327:133–138

    PubMed  CAS  Google Scholar 

  10. Papahadjopoulos D, Moscarello M, Eylar EH, Isac T (1975) Effects of proteins on thermotropic phase transitions of phospholipid membranes. Biochim Biophys Acta 401:317–335

    Article  PubMed  CAS  Google Scholar 

  11. Sáenz A, Cañadas O, Bagatolli LA, Sánchez-Barbero F, Johnson ME, Casals C (2007) Effect of surfactant protein A (SP-A) on the physical properties and surface activity of KL4-surfactant. Biophys J 92:482–492

    Article  PubMed  Google Scholar 

  12. Sáenz A, Lopez-Sanchez A, Mojica-Lazaro J, Martinez-Caro L, Nin N, Bagatolli LA, Casals C (2010) Fluidizing effects of C-reactive protein on lung surfactant membranes: protective role of surfactant protein A. FASEB J 24:3662–3673

    Article  PubMed  Google Scholar 

  13. Cañadas O, García-Verdugo I, Keough KMW, Casals C (2008) SP-A permeabilizes lipopolysaccharide membranes by forming aggregates that extract lipids from the membrane. Biophys J 95:3287–3294

    Article  PubMed  Google Scholar 

  14. van Zoelen EJ, van Dijck PW, de Kruijff B, Verkleij AJ, van Deenen LL (1978) Effect of glycophorin incorporation on the physico-chemical properties of phospholipid bilayers. Biochim Biophys Acta 514:9–24

    Article  PubMed  Google Scholar 

  15. Petri WA, Estep TN, Pal R, Thompson TE, Biltonen RL, Wagner RR (1980) Thermotropic behavior of dipalmitoylphosphatidylcholine vesicles reconstituted with the glycoprotein of vesicular stomatitis virus. Biochemistry 19:3088–3091

    Article  PubMed  CAS  Google Scholar 

  16. Boggs JM, Moscarello MA (1978) Dependence of boundary lipid on fatty acid chain length in phosphatidylcholine vesicles containing a hydrophobic protein from myelin proteolipid. Biochemistry 17:5734–5739

    Article  PubMed  CAS  Google Scholar 

  17. Heyn MP, Blume A, Rehorek M, Dencher NA (1981) Calorimetric and fluorescence depolarization studies on the lipid phase transition of bacteriorhodopsin–dimyristoylphosphatidylcholine vesicles. Biochemistry 20:7109–7115

    Article  PubMed  CAS  Google Scholar 

  18. Semin BK, Saraste M, Wikström M (1984) Calorimetric studies of cytochrome oxidase-phospholipid interactions. Biochim Biophys Acta 769:15–22

    Article  PubMed  CAS  Google Scholar 

  19. Freire E, Markello T, Rigell C, Holloway PW (1983) Calorimetric and fluorescence characterization of interactions between cytochrome b5 and phosphatidylcholine bilayers. Biochemistry 22:1675–1680

    Article  PubMed  CAS  Google Scholar 

  20. Gómez-Fernández JC, Goñi FM, Bach D, Restall C, Chapman D (1979) Protein–lipid interactions. A study of (Ca2+−Mg2+)ATPase reconstituted with synthetic phospholipids. FEBS Lett 98:224–228

    Article  PubMed  Google Scholar 

  21. Plasencia I, Cruz A, Lopez-Lacomba JL, Casals C, Perez-Gil J (2001) Selective labeling of pulmonary surfactant protein SP-C in organic solution. Anal Biochem 296:49–56

    Article  PubMed  CAS  Google Scholar 

  22. Ivanova VP, Makarov IM, Schaffer TE, Heimburg T (2003) Analyzing heat capacity profiles of peptide-containing membranes: cluster formation of gramicidin A. Biophys J 84:2427–2439

    Article  PubMed  CAS  Google Scholar 

  23. Sáenz A, Cañadas O, Bagatolli LA, Johnson ME, Casals C (2006) Physical properties and surface activity of surfactant-like membranes containing the cationic and hydrophobic peptide KL4. FEBS J 273:2515–2527

    Article  PubMed  Google Scholar 

  24. Joanne P, Galanth C, Goasdoue N, Nicolas P, Sagan S, Lavielle S et al (2009) Lipid reorganization induced by membrane-active peptides probed using differential scanning calorimetry. Biochim Biophys Acta 1788:1772–1781

    Article  PubMed  CAS  Google Scholar 

  25. Powers JP, Tan A, Ramamoorthy A, Hancock REW (2005) Solution structure and interaction of the antimicrobial polyphemusins with lipid membranes. Biochemistry 44:15504–15513

    Article  PubMed  CAS  Google Scholar 

  26. Naghibi H, Tamura A, Sturtevant JM (1995) Significant discrepancies between van’t Hoff and calorimetric enthalpies. Proc Natl Acad Sci U S A 92:5597–5599

    Article  PubMed  CAS  Google Scholar 

  27. Mason JT, Huang CM, Biltonen RL (1983) Effect of liposomal size on the calorimetric behavior of mixed-chain phosphatidylcholine bilayers dispersions. Biochemistry 22:2013–2018

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministerio de Ciencia e Innovación (SAF2009-07810) and Instituto de Salud Carlos III (cibeRES-CB06/06/0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Casals .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Cañadas, O., Casals, C. (2013). Differential Scanning Calorimetry of Protein–Lipid Interactions. In: Kleinschmidt, J. (eds) Lipid-Protein Interactions. Methods in Molecular Biology, vol 974. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-275-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-275-9_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-274-2

  • Online ISBN: 978-1-62703-275-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics