Skip to main content

Cytoskeleton Dynamics and Binding Factors

  • Protocol
  • First Online:
The Cytoskeleton

Part of the book series: Neuromethods ((NM,volume 79))

Abstract

The dynamic nature of cellular cytoskeleton is vital to many cell functions. It was shown that all three filamentous components of the cytoskeleton (F-actin, microtubules, and intermediate filaments) share dynamic behavior. In this chapter we address briefly some basic features of cytoskeletal dynamics and then focus on the actin filament system. In this context we review the major classes of actin-interacting partners and their effects on actin cytoskeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chhabra ES, Higgs HN (2007) The many faces of actin: matching assembly factors with cellular structures. Nat Cell Biol 9:1110–1121

    Article  PubMed  CAS  Google Scholar 

  2. Kueh HY, Mitchison TJ (2009) Structural plasticity in actin and tubulin polymer dynamics. Science 325:960–963

    Article  PubMed  CAS  Google Scholar 

  3. Carlier MF, Gutfreund H, Bayley PM (1992) Nucleotide hydrolysis regulates the dynamics of actin filaments and microtubules [and discussion]. Philos Trans R Soc Lond B Biol Sci 336:93–97

    Article  PubMed  CAS  Google Scholar 

  4. Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465

    Article  PubMed  CAS  Google Scholar 

  5. Mitchison T, Kirschner M (1984) Dynamic instability of microtubule growth. Nature 312:237–242

    Article  PubMed  CAS  Google Scholar 

  6. Schek HT III, Gardner MK, Cheng J et al (2007) Microtubule assembly dynamics at the nanoscale. Curr Biol 17:1445–1455

    Article  PubMed  CAS  Google Scholar 

  7. Pedigo S, Williams J (2002) Concentration dependence of variability in growth rates of microtubules. Biophys J 83:1809–1819

    Article  PubMed  CAS  Google Scholar 

  8. Chrétien D, Fuller SD, Karsenti E (1995) Structure of growing microtubule ends: two-dimensional sheets close into tubes at variable rates. J Cell Biol 129:1311–1328

    Article  PubMed  Google Scholar 

  9. Walker RA, O’Brien ET, Pryer NK et al (1988) Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. J Cell Biol 107:1437–1448

    Article  PubMed  CAS  Google Scholar 

  10. Dent EW, Gupton SL, Gertler FB (2011) The growth cone cytoskeleton in axon outgrowth and guidance. Cold Spring Harb Perspect Biol 3(3):pii: a001800

    Article  Google Scholar 

  11. Skau CT, Neidt EM, Kovar DR (2009) Role of tropomyosin in formin-mediated contractile ring assembly in fission yeast. Mol Biol Cell 20:2160–2173

    Article  PubMed  CAS  Google Scholar 

  12. Okabe S, Miyasaka H, Hirokawa N (1993) Dynamics of the neuronal intermediate filaments. J Cell Biol 121:375–386

    Article  PubMed  CAS  Google Scholar 

  13. Sheterline P, Clayton J, Sparrow JC (2002) Actin, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  14. Orlova A, Shvetsov A, Galkin VE et al (2004) Actin-destabilizing factors disrupt filaments by means of a time reversal of polymerization. Proc Natl Acad Sci U S A 101:17664–17668

    Article  PubMed  CAS  Google Scholar 

  15. Kueh HY, Brieher WM, Mitchison TJ (2008) Dynamic stabilization of actin filaments. Proc Natl Acad Sci 105:16531–16536

    Article  PubMed  CAS  Google Scholar 

  16. Oztug Durer ZA, Diraviyam K, Sept D et al (2010) F-actin structure destabilization and DNase I binding loop fluctuations: mutational cross-linking and electron microscopy analysis of loop states and effects on F-actin. J Mol Biol 395:544–557

    Article  PubMed  CAS  Google Scholar 

  17. Scoville D, Stamm JD, Toledo-Warshaviak D et al (2006) Hydrophobic loop dynamics and actin filament stability. Biochemistry 45:13576–13584

    Article  PubMed  CAS  Google Scholar 

  18. Galkin VE, Orlova A, Schroder GF et al (2010) Structural polymorphism in F-actin. Nat Struct Mol Biol 17:1318–1323

    Article  PubMed  CAS  Google Scholar 

  19. Orlova A, Prochniewicz E, Egelman EH (1995) Structural dynamics of F-actin: II. Cooperativity in structural transitions. J Mol Biol 245:598–607

    Article  PubMed  CAS  Google Scholar 

  20. Fujii T, Iwane AH, Yanagida T et al (2010) Direct visualization of secondary structures of F-actin by electron cryomicroscopy. Nature 467:724–728

    Article  PubMed  CAS  Google Scholar 

  21. Dos Remedios CG, Chhabra D, Kekic M et al (2003) Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev 83:433–473

    PubMed  Google Scholar 

  22. Fortin DA, Srivastava T, Soderling TR (2012) Structural modulation of dendritic spines during synaptic plasticity. Neuroscientist 18(4):326–341

    Article  PubMed  Google Scholar 

  23. Chesarone MA, Goode BL (2009) Actin nucleation and elongation factors: mechanisms and interplay. Curr Opin Cell Biol 21:28–37

    Article  PubMed  CAS  Google Scholar 

  24. Chesarone MA, DuPage AG, Goode BL (2010) Unleashing formins to remodel the actin and microtubule cytoskeletons. Nat Rev Mol Cell Biol 11:62–74

    Article  PubMed  CAS  Google Scholar 

  25. Xu XP, Rouiller I, Slaughter BD et al (2011) Three-dimensional reconstructions of Arp2/3 complex with bound nucleation promoting factors. EMBO J 31(1):236–247

    Article  PubMed  Google Scholar 

  26. Rouiller I, Xu XP, Amann KJ et al (2008) The structural basis of actin filament branching by the Arp2/3 complex. J Cell Biol 180:887–895

    Article  PubMed  CAS  Google Scholar 

  27. Le Clainche C, Pantaloni D, Carlier MF (2003) ATP hydrolysis on actin-related protein 2/3 complex causes debranching of dendritic actin arrays. Proc Natl Acad Sci 100:6337–6342

    Article  PubMed  Google Scholar 

  28. Cai L, Makhov AM, Schafer DA et al (2008) Coronin 1B antagonizes cortactin and remodels Arp2/3-containing actin branches in lamellipodia. Cell 134:828–842

    Article  PubMed  CAS  Google Scholar 

  29. Gandhi M, Smith BA, Bovellan M et al (2010) GMF is a cofilin homolog that binds Arp2/3 complex to stimulate filament debranching and inhibit actin nucleation. Curr Biol 20:861–867

    Article  PubMed  CAS  Google Scholar 

  30. Bugyi B, Didry D, Carlier MF (2010) How tropomyosin regulates lamellipodial actin-based motility: a combined biochemical and reconstituted motility approach. EMBO J 29:14–26

    Article  PubMed  CAS  Google Scholar 

  31. Weaver AM, Karginov AV, Kinley AW et al (2001) Cortactin promotes and stabilizes Arp2/3-induced actin filament network formation. Curr Biol 11:370–374

    Article  PubMed  CAS  Google Scholar 

  32. Urban E, Jacob S, Nemethova M et al (2010) Electron tomography reveals unbranched networks of actin filaments in lamellipodia. Nat Cell Biol 12:429–435

    Article  PubMed  CAS  Google Scholar 

  33. Mullins RD, Heuser JA, Pollard TD (1998) The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc Natl Acad Sci 95:6181–6186

    Article  PubMed  CAS  Google Scholar 

  34. Svitkina TM, Borisy GG (1999) Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J Cell Biol 145:1009–1026

    Article  PubMed  CAS  Google Scholar 

  35. Yang C, Svitkina T (2011) Visualizing branched actin filaments in lamellipodia by electron tomography. Nat Cell Biol 13:1012–1013

    Article  PubMed  CAS  Google Scholar 

  36. Ydenberg CA, Smith BA, Breitsprecher D et al (2011) Cease-fire at the leading edge: new perspectives on actin filament branching, debranching, and cross-linking. Cytoskeleton 68:596–602

    Article  PubMed  CAS  Google Scholar 

  37. Quinlan ME, Heuser JE, Kerkhoff E et al (2005) Drosophila Spire is an actin nucleation factor. Nature 433:382–388

    Article  PubMed  CAS  Google Scholar 

  38. Bosch M, Le KHD, Bugyi B et al (2007) Analysis of the function of Spire in actin assembly and its synergy with formin and profilin. Mol Cell 28:555–568

    Article  PubMed  CAS  Google Scholar 

  39. Husson C, Renault L, Didry D et al (2011) Cordon-Bleu uses WH2 domains as multifunctional dynamizers of actin filament assembly. Mol Cell 43:464–477

    Article  PubMed  CAS  Google Scholar 

  40. Eisenmann KM, Harris ES, Kitchen SM et al (2007) Dia-interacting protein modulates formin-mediated actin assembly at the cell cortex. Curr Biol 17:579–591

    Article  PubMed  CAS  Google Scholar 

  41. Chesarone M, Gould CJ, Moseley JB et al (2009) Displacement of formins from growing barbed ends by bud14 is critical for actin cable architecture and function. Dev Cell 16:292–302

    Article  PubMed  CAS  Google Scholar 

  42. Quinlan ME, Hilgert S, Bedrossian A et al (2007) Regulatory interactions between two actin nucleators, Spire and cappuccino. J Cell Biol 179:117–128

    Article  PubMed  CAS  Google Scholar 

  43. Bear JE, Gertler FB (2009) Ena/VASP: towards resolving a pointed controversy at the barbed end. J Cell Sci 122:1947–1953

    Article  PubMed  CAS  Google Scholar 

  44. Hansen SD, Mullins RD (2010) VASP is a processive actin polymerase that requires monomeric actin for barbed end association. J Cell Biol 191:571–584

    Article  PubMed  CAS  Google Scholar 

  45. Ae M, Drubin D (2011) Building distinct actin filament networks in a common cytoplasm. Curr Biol 21:R560–R569

    Article  Google Scholar 

  46. Chereau D, Boczkowska M, Skwarek-Maruszewska A et al (2008) Leiomodin is an actin filament nucleator in muscle cells. Science 320:239–243

    Article  PubMed  CAS  Google Scholar 

  47. Hesterkamp T, Weeds AG, Mannherz HG (1993) The actin monomers in the ternary gelsolin: 2 actin complex are in an antiparallel orientation. Eur J Biochem 218:507–513

    Article  PubMed  CAS  Google Scholar 

  48. Loisel TP, Boujemaa R, Pantaloni D et al (1999) Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401:613–616

    Article  PubMed  CAS  Google Scholar 

  49. Iwasa JH, Mullins RD (2007) Spatial and temporal relationships between actin-filament nucleation, capping, and disassembly. Curr Biol 17:395–406

    Article  PubMed  CAS  Google Scholar 

  50. Uruno T, Remmert K, Hammer JA (2006) CARMIL is a potent capping protein antagonist. J Biol Chem 281:10635–10650

    Article  PubMed  CAS  Google Scholar 

  51. Fischer RS, Fowler VM (2003) Tropomodulins: life at the slow end. Trends Cell Biol 13:593–601

    Article  PubMed  CAS  Google Scholar 

  52. Kostyukova AS (2008) Tropomodulin/tropomyosin interactions regulate actin pointed end dynamics. Adv Exp Med Biol 644:283–292, Landes Bioscience and Springer Science  +  Business Media

    Article  PubMed  CAS  Google Scholar 

  53. Fischer RS, Fritz-Six KL, Fowler VM (2003) Pointed-end capping by tropomodulin3 negatively regulates endothelial cell motility. J Cell Biol 161:371–380

    Article  PubMed  CAS  Google Scholar 

  54. Hotulainen P, Paunola E, Vartiainen MK et al (2005) Actin-depolymerizing factor and cofilin-1 play overlapping roles in promoting rapid F-actin depolymerization in mammalian nonmuscle cells. Mol Biol Cell 16:649–664

    Article  PubMed  CAS  Google Scholar 

  55. Hotulainen P, Llano O, Smirnov S et al (2009) Defining mechanisms of actin polymerization and depolymerization during dendritic spine morphogenesis. J Cell Biol 185:323–339

    Article  PubMed  CAS  Google Scholar 

  56. Andrianantoandro E, Pollard TD (2006) Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. Mol Cell 24:13–23

    Article  PubMed  CAS  Google Scholar 

  57. Pavlov D, Muhlrad A, Cooper J et al (2007) Actin filament severing by cofilin. J Mol Biol 365:1350–1358

    Article  PubMed  CAS  Google Scholar 

  58. Carlier MF, Laurent V, Santolini J et al (1997) Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J Cell Biol 136:1307–1322

    Article  PubMed  CAS  Google Scholar 

  59. Bobkov AA, Muhlrad A, Pavlov DA et al (2006) Cooperative effects of cofilin (ADF) on actin structure suggest allosteric mechanism of cofilin function. J Mol Biol 356:325–334

    Article  PubMed  CAS  Google Scholar 

  60. Moriyama K, Yahara I (1999) Two activities of cofilin, severing and accelerating directional depolymerization of actin filaments, are affected differentially by mutations around the actin-binding helix. EMBO J 18:6752–6761

    Article  PubMed  CAS  Google Scholar 

  61. Chen Q, Pollard TD (2011) Actin filament severing by cofilin is more important for assembly than constriction of the cytokinetic contractile ring. J Cell Biol 195:485–498

    Article  PubMed  CAS  Google Scholar 

  62. McGough A, Pope B, Chiu W et al (1997) Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function. J Cell Biol 138:771–781

    Article  PubMed  CAS  Google Scholar 

  63. Suarez C, Roland J, Boujemaa-Paterski R et al (2011) Cofilin tunes the nucleotide state of actin filaments and severs at bare and decorated segment boundaries. Curr Biol 21:862–868

    Article  PubMed  CAS  Google Scholar 

  64. McCullough B, Grintsevich E, Chen C et al (2011) Cofilin-linked changes in actin filament flexibility promote severing. Biophys J 101:151–159

    Article  PubMed  CAS  Google Scholar 

  65. Kim E, Miller CJ, Reisler E (1996) Polymerization and in vitro motility properties of yeast actin: a comparison with rabbit skeletal α-actin. Biochemistry 35:16566–16572

    Article  PubMed  CAS  Google Scholar 

  66. Kueh HY, Charras GT, Mitchison TJ et al (2008) Actin disassembly by cofilin, coronin, and Aip1 occurs in bursts and is inhibited by barbed-end cappers. J Cell Biol 182:341–353

    Article  PubMed  CAS  Google Scholar 

  67. Gandhi M, Achard V, Blanchoin L et al (2009) Coronin switches roles in actin disassembly depending on the nucleotide state of actin. Mol Cell 34:364–374

    Article  PubMed  CAS  Google Scholar 

  68. Balcer HI, Goodman AL, Rodal AA et al (2003) Coordinated regulation of actin filament turnover by a high-molecular-weight Srv2/CAP complex, cofilin, profilin, and Aip1. Curr Biol 13:2159–2169

    Article  PubMed  CAS  Google Scholar 

  69. Dominguez R (2004) Actin-binding proteins—a unifying hypothesis. Trends Biochem Sci 29:572–578

    Article  PubMed  CAS  Google Scholar 

  70. Gutsche-Perelroizen I, Lepault J, Ott A et al (1999) Filament assembly from profilin-actin. J Biol Chem 274:6234–6243

    Article  PubMed  CAS  Google Scholar 

  71. Gunning P, O-Æneill G, Hardeman E (2008) Tropomyosin-based regulation of the actin cytoskeleton in time and space. Physiol Rev 88:1–35

    Article  PubMed  CAS  Google Scholar 

  72. Lindberg U, Schutt CE, Goldman RD et al (2008) Tropomyosin regulate the impact of actin binding proteins on actin filaments. Adv Exp Med Biol 644:223–231

    Article  PubMed  CAS  Google Scholar 

  73. Pruyne DW, Schott DH, Bretscher A (1998) Tropomyosin-containing actin cables direct the Myo2p-dependent polarized delivery of secretory vesicles in budding yeast. J Cell Biol 143:1931–1945

    Article  PubMed  CAS  Google Scholar 

  74. Nyåkern-Meazza M, Narayan K, Schutt CE et al (2002) Tropomyosin and gelsolin cooperate in controlling the microfilament system. J Biol Chem 277:28774–28779

    Article  PubMed  Google Scholar 

  75. Ishikawa R, Hayashi K, Shirao T et al (1994) Drebrin, a development-associated brain protein from rat embryo, causes the dissociation of tropomyosin from actin filaments. J Biol Chem 269:29928–29933

    PubMed  CAS  Google Scholar 

  76. Grintsevich EE, Galkin VE, Orlova A et al (2010) Mapping of drebrin binding site on F-actin. J Mol Biol 398:542–554

    Article  PubMed  CAS  Google Scholar 

  77. Sharma S, Grintsevich EE, Phillips ML et al (2010) Atomic force microscopy reveals drebrin induced remodeling of F-actin with subnanometer resolution. Nano Lett 11:825–827

    Article  PubMed  Google Scholar 

  78. Claessens MMAE, Semmrich C, Ramos L et al (2008) Helical twist controls the thickness of F-actin bundles. Proc Natl Acad Sci 105:8819–8822

    Article  PubMed  CAS  Google Scholar 

  79. Hashimoto Y, Kim DJ, Adams JC (2011) The roles of fascins in health and disease. J Pathol 224:289–300

    Article  PubMed  CAS  Google Scholar 

  80. Lebart MC, Hubert F, Boiteau C et al (2004) Biochemical characterization of the L-plastin  −  actin interaction shows a resemblance with that of alpha-actinin and allows a distinction to be made between the two actin-binding domains of the molecule. Biochemistry 43:2428–2437

    Article  PubMed  CAS  Google Scholar 

  81. Schmoller KM, Semmrich C, Bausch AR (2011) Slow down of actin depolymerization by cross-linking molecules. J Struct Biol 173:350–357

    Article  PubMed  CAS  Google Scholar 

  82. Breitsprecher D, Koestler SA, Chizhov I et al (2011) Cofilin cooperates with fascin to disassemble filopodial actin filaments. J Cell Sci 124:3305–3318

    Article  PubMed  CAS  Google Scholar 

  83. Schmid MF, Sherman MB, Matsudaira P et al (2004) Structure of the acrosomal bundle. Nature 431:104–107

    Article  PubMed  CAS  Google Scholar 

  84. Nagy S, Rock RS (2010) Structured post-IQ domain governs selectivity of myosin X for fascin-actin bundles. J Biol Chem 285:26608–26617

    Article  PubMed  CAS  Google Scholar 

  85. Hirokawa N, Niwa S, Tanaka Y (2010) Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68:610–638

    Article  PubMed  CAS  Google Scholar 

  86. Sweeney HL, Houdusse A (2010) Structural and functional insights into the myosin motor mechanism. Annu Rev Biophys 39:539–557

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We recognize that due to space limitations many important and relevant studies were not cited directly in this review and we apologize for that to the authors of those publications. This work was supported by USPHS grant GM 077190.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena E. Grintsevich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Grintsevich, E.E., Reisler, E. (2013). Cytoskeleton Dynamics and Binding Factors. In: Dermietzel, R. (eds) The Cytoskeleton. Neuromethods, vol 79. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-266-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-266-7_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-265-0

  • Online ISBN: 978-1-62703-266-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics