Skip to main content

Real-Time Chemical Measurements of Dopamine Release in the Brain

  • Protocol
  • First Online:
Dopamine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 964))

Abstract

Rapid changes in extracellular dopamine concentrations in freely moving or anesthetized rats can be detected using fast-scan cyclic voltammetry (FSCV). Background-subtracted FSCV is a real-time electrochemical technique that can monitor neurochemical transmission in the brain on a subsecond timescale, while providing chemical information on the analyte. Also, this voltammetric approach allows for the investigation of the kinetics of release and uptake of molecules in the brain. This chapter describes, completely, how to make these measurements and the properties of FSCV that make it uniquely suitable for performing chemical measurements of dopaminergic neurotransmission in vivo.

These two authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Day JJ, Roitman MF, Wightman RM, Carelli RM (2007) Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens. Nat Neurosci 10:1020–1028

    Article  PubMed  CAS  Google Scholar 

  2. Schultz W (2007) Behavioral dopamine signals. Trends Neurosci 30:203–210

    Article  PubMed  CAS  Google Scholar 

  3. Obeso JA, Rodriguez-Oroz MC, Goetz CG, Marin C, Kordower JH, Rodriguez M, Hirsch EC, Farrer M, Schapira AH, Halliday G (2010) Missing pieces in the Parkinson’s disease puzzle. Nat Med 16:653–661

    Article  PubMed  CAS  Google Scholar 

  4. Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41:1–24

    Article  PubMed  CAS  Google Scholar 

  5. Carelli RM, Wightman RM (2004) Functional microcircuitry in the accumbens underlying drug addiction: insights from real-time signaling during behavior. Curr Opin Neurobiol 14:763–768

    Article  PubMed  CAS  Google Scholar 

  6. Di Chiara G, Bassareo V (2007) Reward system and addiction: what dopamine does and doesn’t do. Curr Opin Pharmacol 7:69–76

    Article  PubMed  Google Scholar 

  7. Sombers LA, Beyene M, Carelli RM, Wightman RM (2009) Synaptic overflow of dopamine in the nucleus accumbens arises from neuronal activity in the ventral tegmental area. J Neurosci 29:1735–1742

    Article  PubMed  CAS  Google Scholar 

  8. Cheer JF, Wassum KM, Sombers LA, Heien ML, Ariansen JL, Aragona BJ, Phillips PE, Wightman RM (2007) Phasic dopamine release evoked by abused substances requires cannabinoid receptor activation. J Neurosci 27:791–795

    Article  PubMed  CAS  Google Scholar 

  9. Phillips PE, Stuber GD, Heien ML, Wightman RM, Carelli RM (2003) Subsecond dopamine release promotes cocaine seeking. Nature 422:614–618

    Article  PubMed  CAS  Google Scholar 

  10. Owesson-White CA, Cheer JF, Beyene M, Carelli RM, Wightman RM (2008) Dynamic changes in accumbens dopamine correlate with learning during intracranial self-stimulation. Proc Natl Acad Sci U S A 105:11957–11962

    Article  PubMed  CAS  Google Scholar 

  11. Roitman MF, Stuber GD, Phillips PE, Wightman RM, Carelli RM (2004) Dopamine operates as a subsecond modulator of food seeking. J Neurosci 24:1265–1271

    Article  PubMed  CAS  Google Scholar 

  12. Cheer JF, Aragona BJ, Heien ML, Seipel AT, Carelli RM, Wightman RM (2007) Coordinated accumbal dopamine release and neural activity drive goal-directed behavior. Neuron 54:237–244

    Article  PubMed  CAS  Google Scholar 

  13. Justice JB Jr (1993) Quantitative microdialysis of neurotransmitters. J Neurosci Methods 48:263–276

    Article  PubMed  CAS  Google Scholar 

  14. Lu Y, Peters JL, Michael AC (1998) Direct comparison of the response of voltammetry and microdialysis to electrically evoked release of striatal dopamine. J Neurochem 70:584–593

    Article  PubMed  CAS  Google Scholar 

  15. Michael AC, Borland LM (eds) (2007) Electrochemical methods for neuroscience, vol 1, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  16. Heien ML, Johnson MA, Wightman RM (2004) Resolving neurotransmitters detected by fast-scan cyclic voltammetry. Anal Chem 76:5697–5704

    Article  PubMed  CAS  Google Scholar 

  17. Herr NR, Belle AM, Daniel KB, Carelli RM, Wightman RM (2010) Probing presynaptic regulation of extracellular dopamine with iontophoresis. ACS Chem Neurosci 1:627–638

    Article  PubMed  CAS  Google Scholar 

  18. Kuhr WG, Wightman RM, Rebec GV (1987) Dopaminergic neurons: simultaneous measurements of dopamine release and single-unit activity during stimulation of the medial forebrain bundle. Brain Res 418:122–128

    Article  PubMed  CAS  Google Scholar 

  19. Millar J, Stamford JA, Kruk ZL, Wightman RM (1985) Electrochemical, pharmacological and electrophysiological evidence of rapid dopamine release and removal in the rat caudate nucleus following electrical stimulation of the median forebrain bundle. Eur J Pharmacol 109:341–348

    Article  PubMed  CAS  Google Scholar 

  20. Robinson DL, Hermans A, Seipel AT, Wightman RM (2008) Monitoring rapid chemical communication in the brain. Chem Rev 108:2554–2584

    Article  PubMed  CAS  Google Scholar 

  21. Phillips PEM, Wightman RM (2003) Critical guidelines for validation of the selectivity of in-vivo chemical microsensors. Trac-Trend Anal Chem 22:509–514

    Article  CAS  Google Scholar 

  22. Arbuthnott GW, Wickens J (2007) Space, time and dopamine. Trends Neurosci 30:62–69

    Article  PubMed  CAS  Google Scholar 

  23. Bath BD, Michael DJ, Trafton BJ, Joseph JD, Runnels PL, Wightman RM (2000) Subsecond adsorption and desorption of dopamine at carbon-fiber microelectrodes. Anal Chem 72:5994–6002

    Article  PubMed  CAS  Google Scholar 

  24. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. John Wiley, New York

    Google Scholar 

  25. Wightman RM, Amatore C, Engstrom RC, Hale PD, Kristensen EW, Kuhr WG, May LJ (1988) Real-time characterization of dopamine overflow and uptake in the rat striatum. Neuroscience 25:513–523

    Article  PubMed  CAS  Google Scholar 

  26. Wightman RM, Heien ML, Wassum KM, Sombers LA, Aragona BJ, Khan AS, Ariansen JL, Cheer JF, Phillips PE, Carelli RM (2007) Dopamine release is heterogeneous within microenvironments of the rat nucleus accumbens. Eur J Neurosci 26:2046–2054

    Article  PubMed  Google Scholar 

  27. Venton BJ, Wightman RM (2007) Pharmacologically induced, subsecond dopamine transients in the caudate-putamen of the anesthetized rat. Synapse 61:37–39

    Article  PubMed  CAS  Google Scholar 

  28. Keithley RB, Heien ML, Wightman RM (2009) Multivariate concentration determination using principal component regression with residual analysis. Trends Anal Chem 28:1127–1136

    Article  CAS  Google Scholar 

  29. Williams GV, Millar J (1990) Concentration-dependent actions of stimulated dopamine release on neuronal activity in rat striatum. Neuroscience 39:1–16

    Article  PubMed  CAS  Google Scholar 

  30. Olds J, Milner P (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol 47:419–427

    Article  PubMed  CAS  Google Scholar 

  31. Garris PA, Kilpatrick M, Bunin MA, Michael D, Walker QD, Wightman RM (1999) Dissociation of dopamine release in the nucleus accumbens from intracranial self-stimulation. Nature 398:67–69

    Article  PubMed  CAS  Google Scholar 

  32. Ikemoto S, Qin M, Liu ZH (2005) The functional divide for primary reinforcement of D-amphetamine lies between the medial and lateral ventral striatum: is the division of the accumbens core, shell, and olfactory tubercle valid? J Neurosci 25:5061–5065

    Article  PubMed  CAS  Google Scholar 

  33. Ikemoto S, Qin M, Liu ZH (2006) Primary reinforcing effects of nicotine are triggered from multiple regions both inside and outside the ventral tegmental area. J Neurosci 26:723–730

    Article  PubMed  CAS  Google Scholar 

  34. Ikemoto S, Sharpe LG (2001) A head-attachable device for injecting nanoliter volumes of drug solutions into brain sites of freely moving rats. J Neurosci Methods 110:135–140

    Article  PubMed  CAS  Google Scholar 

  35. Rebec GV, Bashore TR (1984) Critical issues in assessing the behavioral effects of amphetamine. Neurosci Biobehav Rev 8:153–159

    Article  PubMed  CAS  Google Scholar 

  36. Herr NR, Kile BM, Carelli RM, Wightman RM (2008) Electroosmotic flow and its contribution to iontophoretic delivery. Anal Chem 80:8635–8641

    Article  PubMed  CAS  Google Scholar 

  37. Garris PA, Ensman R, Poehlman J, Alexander A, Langley PE, Sandberg SG, Greco PG, Wightman RM, Rebec GV (2004) Wireless transmission of fast-scan cyclic voltammetry at a carbon-fiber microelectrode: proof of principle. J Neurosci Methods 140:103–115

    Article  PubMed  CAS  Google Scholar 

  38. Hermans A, Keithley RB, Kita JM, Sombers LA, Wightman RM (2008) Dopamine detection with fast-scan cyclic voltammetry used with analog background subtraction. Anal Chem 80:4040–4048

    Article  PubMed  CAS  Google Scholar 

  39. Zachek MK, Park J, Takmakov P, Wightman RM, McCarty GS (2010) Microfabricated FSCV-compatible microelectrode array for real-time monitoring of heterogeneous dopamine release. Analyst 135:1556–1563

    Article  PubMed  CAS  Google Scholar 

  40. Zachek MK, Takmakov P, Moody B, Wightman RM, McCarty GS (2009) Simultaneous decoupled detection of dopamine and oxygen using pyrolyzed carbon microarrays and fast-scan cyclic voltammetry. Anal Chem 81:6258–6265

    Article  PubMed  CAS  Google Scholar 

  41. Zachek MK, Takmakov P, Park J, Wightman RM, McCarty GS (2010) Simultaneous monitoring of dopamine concentration at spatially different brain locations in vivo. Biosens Bioelectron 25:1179–1185

    Article  PubMed  CAS  Google Scholar 

  42. Clark JJ, Sandberg SG, Wanat MJ, Gan JO, Horne EA, Hart AS, Akers CA, Parker JG, Willuhn I, Martinez V, Evans SB, Stella N, Phillips PE (2010) Chronic microsensors for longitudinal, subsecond dopamine detection in behaving animals. Nat Methods 7:126–129

    Article  PubMed  CAS  Google Scholar 

  43. Garris PA (2010) Advancing neurochemical monitoring. Nat Methods 7:106–108

    Article  PubMed  CAS  Google Scholar 

  44. Stuber GD, Hnasko TS, Britt JP, Edwards RH, Bonci A (2010) Dopaminergic terminals in the nucleus accumbens but not the dorsal striatum corelease glutamate. J Neurosci 30:8229–8233

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded in part by grants from the National Institutes of Health, the National Science Foundation, and NCSU Department of Chemistry. In addition, we gratefully acknowledge our coworkers, past and present, for the studies cited in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie A. Sombers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Roberts, J.G., Lugo-Morales, L.Z., Loziuk, P.L., Sombers, L.A. (2013). Real-Time Chemical Measurements of Dopamine Release in the Brain. In: Kabbani, N. (eds) Dopamine. Methods in Molecular Biology, vol 964. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-251-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-251-3_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-250-6

  • Online ISBN: 978-1-62703-251-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics