Skip to main content

Spinal Cord Injury: Modern Clinical Management and Its Correlation to Advances in Basic Science

  • Protocol
  • First Online:
Animal Models of Spinal Cord Repair

Part of the book series: Neuromethods ((NM,volume 76))

  • 956 Accesses

Abstract

This chapter reflects the yearning for discoveries within the field of spinal cord injury (SCI) and points out the difficulties, opportunities, as well as possibilities to relate and translate the results from basic science to clinical management. After a brief presentation of “spinal cord history,” we provide a short overview of the cornerstones of modern management of patients with SCI. This overview will, besides introducing basic scientists in the field of clinical practice, also expose the inherent imprecision of everyday clinical care compared to the high methodological requirements of experimental SCI research. We will focus our presentation on medical management aimed at preventing the consequences of secondary injury in the acute period, i.e., neuroprotection. A brief overview of various techniques of neural regeneration in the subacute (late) and chronic phase will follow this. Finally, based on the progress in basic science within the fields of neuroprotection and regeneration, some thoughts about future clinical therapeutic avenues will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lifshutz J, Colohan A (2004) A brief history of therapy for traumatic spinal cord injury. Neurosurg Focus 16(1):E5

    PubMed  Google Scholar 

  2. Wilkins R (1964) The Edwin Smith surgical papyrus (Neurosurgical classic XVII). J Neurosurg 21:240–244

    Article  PubMed  CAS  Google Scholar 

  3. Ahn H, Singh J, Nathens A, MacDonald RD, Travers A, Tallon J et al (2011) Pre-hospital care management of a potential spinal cord injured patient: a systematic review of the literature and evidence-based guidelines. J Neurotrauma 28(8):1341–1361

    Article  PubMed  Google Scholar 

  4. Fehlings MG, Cadotte DW, Fehlings LN (2011) A series of systematic reviews on the treatment of acute spinal cord injury: a foundation for best medical practice. J Neurotrauma 28(8):1329–1333

    Article  PubMed  Google Scholar 

  5. Markandaya M, Stein DM, Menaker J. Acute treatment options for spinal cord injury. Curr Treat Options Neurol 2012 (Epub ahead of print)

    Google Scholar 

  6. Werndle MC, Zoumprouli A, Sedgwick P, Papadopoulos MC (2012) Variability in the treatment of acute spinal cord injury in the United Kingdom: results of a national survey. J Neurotrauma 29(5):880–888

    Article  PubMed  Google Scholar 

  7. Anderberg L, Aldskogius H, Holtz A (2007) Spinal cord injury—scientific challenges for the unknown future. Ups J Med Sci 112(3):259–288

    Article  PubMed  Google Scholar 

  8. Balentine JD (1978) Pathology of experimental spinal cord trauma. I. The necrotic lesion as a function of vascular injury. Lab Invest 39(3):236–253

    PubMed  CAS  Google Scholar 

  9. Tator CH, Fehlings MG (1991) Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 75(1):15–26

    Article  PubMed  CAS  Google Scholar 

  10. Tator CH, Rowed DW, Schwartz ML, Gertzbein SD, Bharatwal N, Barkin M et al (1984) Management of acute spinal cord injuries. Can J Surg 27(3):289–293, 296

    PubMed  CAS  Google Scholar 

  11. Gupta R, Bathen ME, Smith JS, Levi AD, Bhatia NN, Steward O (2010) Advances in the management of spinal cord injury. J Am Acad Orthop Surg 18(4):210–222

    PubMed  Google Scholar 

  12. Oyinbo CA (2011) Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol Exp (Wars) 71(2):281–299

    Google Scholar 

  13. Anderson DK, Beattie M, Blesch A, Bresnahan J, Bunge M, Dietrich D et al (2005) Recommended guidelines for studies of human subjects with spinal cord injury. Spinal Cord 43(8):453–458

    Article  PubMed  CAS  Google Scholar 

  14. Berney S, Bragge P, Granger C, Opdam H, Denehy L (2011) The acute respiratory management of cervical spinal cord injury in the first 6 weeks after injury: a systematic review. Spinal Cord 49(1):17–29

    Article  PubMed  CAS  Google Scholar 

  15. Winslow C, Rozovsky J (2003) Effect of spinal cord injury on the respiratory system. Am J Phys Med Rehabil 82(10):803–814

    Article  PubMed  Google Scholar 

  16. Lazaridis C (2012) Advanced hemodynamic monitoring: principles and practice in neurocritical care. Neurocrit Care 16(1):163–169

    Article  PubMed  Google Scholar 

  17. Ploumis A, Yadlapalli N, Fehlings MG, Kwon BK, Vaccaro AR (2010) A systematic review of the evidence supporting a role for vasopressor support in acute SCI. Spinal Cord 48(5):356–362

    Article  PubMed  CAS  Google Scholar 

  18. Raslan AM, Fields JD, Bhardwaj A (2010) Prophylaxis for venous thrombo-embolism in neurocritical care: a critical appraisal. Neurocrit Care 12(2):297–309

    Article  PubMed  Google Scholar 

  19. McKinley W, McNamee S, Meade M, Kandra K, Abdul N (2006) Incidence, etiology, and risk factors for fever following acute spinal cord injury. J Spinal Cord Med 29(5):501–506

    PubMed  Google Scholar 

  20. Fehlings MG, Wilson JR (2010) Spine trauma: the challenges in assessing outcomes. J Neurosurg Spine 13(5):636–637, discussion 7

    Article  PubMed  Google Scholar 

  21. Furlan JC, Noonan V, Singh A, Fehlings MG (2011) Assessment of impairment in patients with acute traumatic spinal cord injury: a systematic review of the literature. J Neurotrauma 28(8):1445–1477

    Article  PubMed  Google Scholar 

  22. Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12(1):1–21

    Article  PubMed  CAS  Google Scholar 

  23. Apuzzo M (2002) Pharmacological therapy after acute cervical spinal cord injury. Neurosurgery 50(3 Suppl):S63–S72

    Google Scholar 

  24. Felleiter P, Muller N, Schumann F, Felix O, Lierz P (2012) Changes in the use of the methylprednisolone protocol for traumatic spinal cord injury in Switzerland. Spine (Phila Pa 1976) 37(11):953–956

    Article  Google Scholar 

  25. Lammertse D, Dungan D, Dreisbach J, Falci S, Flanders A, Marino R et al (2007) Neuroimaging in traumatic spinal cord injury: an evidence-based review for clinical practice and research. J Spinal Cord Med 30(3):205–214

    PubMed  Google Scholar 

  26. Miyanji F, Furlan JC, Aarabi B, Arnold PM, Fehlings MG (2007) Acute cervical traumatic spinal cord injury: MR imaging findings correlated with neurologic outcome—prospective study with 100 consecutive patients. Radiology 243(3):820–827

    Article  PubMed  Google Scholar 

  27. Bagnall AM, Jones L, Duffy S, Riemsma RP. Spinal fixation surgery for acute traumatic spinal cord injury. Cochrane Database Syst Rev 2008(1):CD004725

    Google Scholar 

  28. Furlan JC, Noonan V, Cadotte DW, Fehlings MG (2011) Timing of decompressive surgery of spinal cord after traumatic spinal cord injury: an evidence-based examination of pre-clinical and clinical studies. J Neurotrauma 28(8):1371–1399

    Article  PubMed  Google Scholar 

  29. Fehlings MG, Vaccaro A, Wilson JR, Singh A, Cadotte DW, Harrop JS et al (2012) Early versus delayed decompression for traumatic cervical spinal cord injury: results of the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS). PLoS One 7(2):e32037

    Article  PubMed  CAS  Google Scholar 

  30. ClinicalTrials.gov (Internet). Araabi (MD): National Library of Medicine (US). 2009- (cited 2012 Mar 13). Available from: http://clinicaltrials.gov/show/NCT00475748 NLM Identifier:NCT00475748. (database on the Internet)

  31. David S, Aguayo AJ (1981) Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 214(4523):931–933

    Article  PubMed  CAS  Google Scholar 

  32. Goldshmit Y, Spanevello MD, Tajouri S, Li L, Rogers F, Pearse M et al (2011) EphA4 blockers promote axonal regeneration and functional recovery following spinal cord injury in mice. PLoS One 6(9):e24636

    Article  PubMed  CAS  Google Scholar 

  33. Fawcett JW (2006) The glial response to injury and its role in the inhibition of CNS repair. Adv Exp Med Biol 557:11–24

    Article  PubMed  CAS  Google Scholar 

  34. Kuffler DP (2011) Are we approaching research into the repair of spinal cord trauma from the best perspective? J Neurodegen Regen 3(1):55–77

    Google Scholar 

  35. Reier PJ (2004) Cellular transplantation strategies for spinal cord injury and translational neurobiology. NeuroRx 1(4):424–451

    Article  PubMed  Google Scholar 

  36. Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5(2):146–156

    Article  PubMed  CAS  Google Scholar 

  37. Thuret S, Moon LD, Gage FH (2006) Therapeutic interventions after spinal cord injury. Nat Rev Neurosci 7(8):628–643

    Article  PubMed  CAS  Google Scholar 

  38. Schmitt AB, Breuer S, Liman J, Buss A, Schlangen C, Pech K et al (2003) Identification of regeneration-associated genes after central and peripheral nerve injury in the adult rat. BMC Neurosci 4:8

    Article  PubMed  Google Scholar 

  39. Zhou FQ, Snider WD (2006) Intracellular control of developmental and regenerative axon growth. Philos Trans R Soc Lond B Biol Sci 361(1473):1575–1592

    Article  PubMed  CAS  Google Scholar 

  40. ClinicalTrials.gov (Internet). Oliviero (MD): National Library of Medicine (US). 2011-(cited 2012 May 03). Available from: http://clinicaltrials.gov/show/NCT01329757 NLM Identifier: NCT01329757 (database on the Internet)

  41. Fawcett JW (2006) Overcoming inhibition in the damaged spinal cord. J Neurotrauma 23(3–4):371–383

    Article  PubMed  Google Scholar 

  42. Schwab ME (2004) Nogo and axon regeneration. Curr Opin Neurobiol 14(1):118–124

    Article  PubMed  CAS  Google Scholar 

  43. Yiu G, He Z (2006) Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 7(8):617–627

    Article  PubMed  CAS  Google Scholar 

  44. Zorner B, Schwab ME (2010) Anti-Nogo on the go: from animal models to a clinical trial. Ann N Y Acad Sci 1198(Suppl 1):E22–E34

    Article  PubMed  Google Scholar 

  45. ClinicalTrials.gov (Internet). GSK Clinical Trials: National Library of Medicine (US). 2011- (cited 2012 May 03). Available from: http://clinicaltrials.gov/show/NCT00622609 NLM Identifier: NCT00622609. (database on the Internet)2011

  46. Lee JK, Zheng B (2012) Role of myelin-associated inhibitors in axonal repair after spinal cord injury. Exp Neurol 235(1):33–42

    Article  PubMed  CAS  Google Scholar 

  47. Cardenas DD, Ditunno J, Graziani V, Jackson AB, Lammertse D, Potter P et al (2007) Phase 2 trial of sustained-release fampridine in chronic spinal cord injury. Spinal Cord 45(2):158–168

    Article  PubMed  CAS  Google Scholar 

  48. Jones TB, McDaniel EE, Popovich PG (2005) Inflammatory-mediated injury and repair in the traumatically injured spinal cord. Curr Pharm Des 11(10):1223–1236

    Article  PubMed  CAS  Google Scholar 

  49. Rice T, Larsen J, Rivest S, Yong VW (2007) Characterization of the early neuroinflammation after spinal cord injury in mice. J Neuropathol Exp Neurol 66(3):184–195

    Article  PubMed  CAS  Google Scholar 

  50. Kubasak MD, Hedlund E, Roy RR, Carpenter EM, Edgerton VR, Phelps PE (2005) L1 CAM expression is increased surrounding the lesion site in rats with complete spinal cord transection as neonates. Exp Neurol 194(2):363–375

    Article  PubMed  CAS  Google Scholar 

  51. Segal JL (2005) Immunoactivation and altered intercellular communication mediate the pathophysiology of spinal cord injury. Pharmacotherapy 25(2):145–156

    Article  PubMed  CAS  Google Scholar 

  52. Knoller N, Auerbach G, Fulga V, Zelig G, Attias J, Bakimer R et al (2005) Clinical experience using incubated autologous macrophages as a treatment for complete spinal cord injury: phase I study results. J Neurosurg Spine 3(3):173–181

    Article  PubMed  Google Scholar 

  53. Schwartz M, Yoles E (2006) Immune-based therapy for spinal cord repair: autologous macrophages and beyond. J Neurotrauma 23(3–4):360–370

    Article  PubMed  Google Scholar 

  54. ClinicalTrials.gov (Internet). National Library of medicine (US). 2003- (cited 2012 May 25). Available from: http://cliniclatrials.gov/show/NCT00073853 NLM Identifier: NCT00073853 (database on the Internet)

  55. Busch SA, Silver J (2007) The role of extracellular matrix in CNS regeneration. Curr Opin Neurobiol 17(1):120–127

    Article  PubMed  CAS  Google Scholar 

  56. Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, Patel PN et al (2002) Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416(6881):636–640

    Article  PubMed  CAS  Google Scholar 

  57. Barritt AW, Davies M, Marchand F, Hartley R, Grist J, Yip P et al (2006) Chondroitinase ABC promotes sprouting of intact and injured spinal systems after spinal cord injury. J Neurosci 26(42):10856–10867

    Article  PubMed  CAS  Google Scholar 

  58. Fouad K, Schnell L, Bunge MB, Schwab ME, Liebscher T, Pearse DD (2005) Combining Schwann cell bridges and olfactory-ensheathing glia grafts with chondroitinase promotes locomotor recovery after complete transection of the spinal cord. J Neurosci 25(5):1169–1178

    Article  PubMed  CAS  Google Scholar 

  59. http://www.seikagaku.co.jp/english/pdf/50.pdf (database on the Internet)

  60. Hong Z, Hong H, Chen H, Wang Z, Hong D (2012) Protective effects of erythropoietin in experimental spinal cord injury by reducing the C/EBP-homologous protein expression. Neurol Res 34(1):85–90

    Article  PubMed  CAS  Google Scholar 

  61. Matis GK, Birbilis TA (2009) Erythropoietin in spinal cord injury. Eur Spine J 18(3):314–323

    Article  PubMed  Google Scholar 

  62. Pearse DD, Pereira FC, Marcillo AE, Bates ML, Berrocal YA, Filbin MT et al (2004) cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury. Nat Med 10(6):610–616

    Article  PubMed  CAS  Google Scholar 

  63. McKerracher L, Higuchi H (2006) Targeting Rho to stimulate repair after spinal cord injury. J Neurotrauma 23(3–4):309–317

    Article  PubMed  Google Scholar 

  64. Dergham P, Ellezam B, Essagian C, Avedissian H, Lubell WD, McKerracher L (2002) Rho signaling pathway targeted to promote spinal cord repair. J Neurosci 22(15):6570–6577

    PubMed  CAS  Google Scholar 

  65. Fehlings MG, Theodore N, Harrop J, Maurais G, Kuntz C, Shaffrey CI et al (2011) A phase I/IIa clinical trial of a recombinant Rho protein antagonist in acute spinal cord injury. J Neurotrauma 28(5):787–796

    Article  PubMed  Google Scholar 

  66. Olson L, Cheng H, Zetterstrom RH, Solomin L, Jansson L, Gimenez-Llort L et al (1998) On CNS repair and protection strategies: novel approaches with implications for spinal cord injury and Parkinson’s disease. Brain Res Brain Res Rev 26(2–3):302–305

    Article  PubMed  CAS  Google Scholar 

  67. Fraidakis MJ, Spenger C, Olson L (2004) Partial recovery after treatment of chronic paraplegia in rat. Exp Neurol 188(1):33–42

    Article  PubMed  Google Scholar 

  68. Xu XM, Chen A, Guenard V, Kleitman N, Bunge MB (1997) Bridging Schwann cell transplants promote axonal regeneration from both the rostral and caudal stumps of transected adult rat spinal cord. J Neurocytol 26(1):1–16

    Article  PubMed  CAS  Google Scholar 

  69. Takami T, Oudega M, Bates ML, Wood PM, Kleitman N, Bunge MB (2002) Schwann cell but not olfactory ensheathing glia transplants improve hindlimb locomotor performance in the moderately contused adult rat thoracic spinal cord. J Neurosci 22(15):6670–6681

    PubMed  CAS  Google Scholar 

  70. Mackay-Sim A, Feron F, Cochrane J, Bassingthwaighte L, Bayliss C, Davies W et al (2008) Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3-year clinical trial. Brain 131(Pt 9):2376–2386

    Article  PubMed  CAS  Google Scholar 

  71. Chuah MI, Hale DM, West AK (2011) Interaction of olfactory ensheathing cells with other cell types in vitro and after transplantation: glial scars and inflammation. Exp Neurol 229(1):46–53

    Article  PubMed  Google Scholar 

  72. Nomura H, Tator CH, Shoichet MS (2006) Bioengineered strategies for spinal cord repair. J Neurotrauma 23(3–4):496–507

    Article  PubMed  Google Scholar 

  73. Rochkind S, Shahar A, Fliss D, El-Ani D, Astachov L, Hayon T et al (2006) Development of a tissue-engineered composite implant for treating traumatic paraplegia in rats. Eur Spine J 15(2):234–245

    Article  PubMed  CAS  Google Scholar 

  74. Akesson E, Holmberg L, Jonhagen ME, Kjaeldgaard A, Falci S, Sundstrom E et al (2001) Solid human embryonic spinal cord xenografts in acute and chronic spinal cord cavities: a morphological and functional study. Exp Neurol 170(2):305–316

    Article  PubMed  CAS  Google Scholar 

  75. Ogawa Y, Sawamoto K, Miyata T, Miyao S, Watanabe M, Nakamura M et al (2002) Transplantation of in vitro-expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats. J Neurosci Res 69(6):925–933

    Article  PubMed  CAS  Google Scholar 

  76. Falci S, Holtz A, Akesson E, Azizi M, Ertzgaard P, Hultling C et al (1997) Obliteration of a posttraumatic spinal cord cyst with solid human embryonic spinal cord grafts: first clinical attempt. J Neurotrauma 14(11):875–884

    Article  PubMed  CAS  Google Scholar 

  77. Hawryluk GW, Mothe A, Wang J, Wang S, Tator C, Fehlings MG (2012) An in vivo characterization of trophic factor production following neural precursor cell or bone marrow stromal cell transplantation for spinal cord injury. Stem Cells Dev 21(12):2222–2238

    Article  PubMed  CAS  Google Scholar 

  78. Ruff CA, Wilcox JT, Fehlings MG (2012) Cell-based transplantation strategies to promote plasticity following spinal cord injury. Exp Neurol 235(1):78–90

    Article  PubMed  Google Scholar 

  79. Wright KT, El Masri W, Osman A, Chowdhury J, Johnson WE (2011) Concise review: bone marrow for the treatment of spinal cord injury: mechanisms and clinical applications. Stem Cells 29(2):169–178

    Article  PubMed  CAS  Google Scholar 

  80. Chung JY, Kim W, Im W, Yoo DY, Choi JH, Hwang IK et al (2012) Neuroprotective effects of adipose-derived stem cells against ischemic neuronal damage in the rabbit spinal cord. J Neurol Sci 317(1–2):40–46

    Article  PubMed  CAS  Google Scholar 

  81. Park DH, Lee JH, Borlongan CV, Sanberg PR, Chung YG, Cho TH (2011) Transplantation of umbilical cord blood stem cells for treating spinal cord injury. Stem Cell Rev 7(1):181–194

    Article  PubMed  Google Scholar 

  82. Lindvall O, Kokaia Z (2010) Stem cells in human neurodegenerative disorders—time for clinical translation? J Clin Invest 120(1):29–40

    Article  PubMed  CAS  Google Scholar 

  83. Hernandez J, Torres-Espin A, Navarro X (2011) Adult stem cell transplants for spinal cord injury repair: current state in preclinical research. Curr Stem Cell Res Ther 6(3):273–287

    Article  PubMed  CAS  Google Scholar 

  84. Peljto M, Wichterle H (2011) Programming embryonic stem cells to neuronal subtypes. Curr Opin Neurobiol 21(1):43–51

    Article  PubMed  CAS  Google Scholar 

  85. Tsuji O, Miura K, Fujiyoshi K, Momoshima S, Nakamura M, Okano H (2011) Cell therapy for spinal cord injury by neural stem/progenitor cells derived from iPS/ES cells. Neurotherapeutics 8(4):668–676

    Article  PubMed  Google Scholar 

  86. Amoh Y, Katsuoka K, Hoffman RM (2010) The advantages of hair follicle pluripotent stem cells over embryonic stem cells and induced pluripotent stem cells for regenerative medicine. J Dermatol Sci 60(3):131–137

    Article  PubMed  CAS  Google Scholar 

  87. Sieber-Blum M (2010) Epidermal neural crest stem cells and their use in mouse models of spinal cord injury. Brain Res Bull 83(5):189–193

    Article  PubMed  CAS  Google Scholar 

  88. Bhanot Y, Rao S, Ghosh D, Balaraju S, Radhika CR, Satish Kumar KV (2011) Autologous mesenchymal stem cells in chronic spinal cord injury. Br J Neurosurg 25(4):516–522

    Article  PubMed  Google Scholar 

  89. Deda H, Inci MC, Kurekci AE, Kayihan K, Ozgun E, Ustunsoy GE et al (2008) Treatment of chronic spinal cord injured patients with autologous bone marrow-derived hematopoietic stem cell transplantation: 1-year follow-up. Cytotherapy 10(6):565–574

    Article  PubMed  CAS  Google Scholar 

  90. Park HC, Shim YS, Ha Y, Yoon SH, Park SR, Choi BH et al (2005) Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of granulocyte-macrophage colony stimulating factor. Tissue Eng 11(5–6):913–922

    Article  PubMed  CAS  Google Scholar 

  91. ClinicalTrials.gov (Internet). Sabaawy (M, PhD): Natrional Library of Medicine (US). 2009- (cited 2012 Mar 13). Available from http://clinicaltrialss.gov/show/NCT00816803 NLM Identifier: NCT00816803 (database on the Internet)

  92. Callera F, do Nascimento RX (2006) Delivery of autologous bone marrow precursor cells into the spinal cord via lumbar puncture technique in patients with spinal cord injury: a preliminary safety study. Exp Hematol 34(2):130–131

    Article  PubMed  Google Scholar 

  93. Geffner LF, Santacruz P, Izurieta M, Flor L, Maldonado B, Auad AH et al (2008) Administration of autologous bone marrow stem cells into spinal cord injury patients via multiple routes is safe and improves their quality of life: comprehensive case studies. Cell Transplant 17(12):1277–1293

    Article  PubMed  CAS  Google Scholar 

  94. Pal R, Venkataramana NK, Bansal A, Balaraju S, Jan M, Chandra R et al (2009) Ex vivo-expanded autologous bone marrow-derived mesenchymal stromal cells in human spinal cord injury/paraplegia: a pilot clinical study. Cytotherapy 11(7):897–911

    Article  PubMed  CAS  Google Scholar 

  95. Saito F, Nakatani T, Iwase M, Maeda Y, Hirakawa A, Murao Y et al (2008) Spinal cord injury treatment with intrathecal autologous bone marrow stromal cell transplantation: the first clinical trial case report. J Trauma 64(1):53–59

    Article  PubMed  Google Scholar 

  96. Yoon SH, Shim YS, Park YH, Chung JK, Nam JH, Kim MO et al (2007) Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: phase I/II clinical trial. Stem Cells 25(8):2066–2073

    Article  PubMed  Google Scholar 

  97. Cristante AF, Barros-Filho TE, Tatsui N, Mendrone A, Caldas JG, Camargo A et al (2009) Stem cells in the treatment of chronic spinal cord injury: evaluation of somatosensitive evoked potentials in 39 patients. Spinal Cord 47(10):733–738

    Article  PubMed  CAS  Google Scholar 

  98. Sykova E, Homola A, Mazanec R, Lachmann H, Konradova SL, Kobylka P et al (2006) Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant 15(8–9):675–687

    Article  PubMed  Google Scholar 

  99. Malgieri A, Kantzari E, Patrizi MP, Gambardella S (2010) Bone marrow and umbilical cord blood human mesenchymal stem cells: state of the art. Int J Clin Exp Med 3(4):248–269

    PubMed  Google Scholar 

  100. Momin EN, Mohyeldin A, Zaidi HA, Vela G, Quinones-Hinojosa A (2010) Mesenchymal stem cells: new approaches for the treatment of neurological diseases. Curr Stem Cell Res Ther 5(4):326–344

    Article  PubMed  CAS  Google Scholar 

  101. Kang KS, Kim SW, Oh YH, Yu JW, Kim KY, Park HK et al (2005) A 37-year-old spinal cord-injured female patient, transplanted of multipotent stem cells from human UC blood, with improved sensory perception and mobility, both functionally and morphologically: a case study. Cytotherapy 7(4):368–373

    Article  PubMed  Google Scholar 

  102. ClinicalTrials.gov (Internet). Yihua (MD): National Library of Medicine (US). 2011- (cited 2012 Mar 17). Available from: http://clinicaltrials.gov/show/NCT01393977 NLMIdentifier: NCT01393977. (database on the Internet)

  103. ClinicalTrials.gov (Internet). Zhu (MD): National Library of Medicine (US). 2011- (cited 2012 Mar 17). Available from: http://clinicaltrials.gov/show/NCT01354483 NLM Identifier: NCT01354483. (database on the Internet)

  104. ClinicalTrials.gov (Internet).Sang Poon (MD): National Library of Medicine (US). 2011-(cited 2012 May 03). Available from: http://clinicaltrials.gov/show/NCT01046786 NLM Identifier: NCT01046786 (database on the Internet)

  105. Mayor S (2010) First patient enters trial to test safety of stem cells in spinal injury. BMJ 341:c5724

    Article  PubMed  Google Scholar 

  106. Stem Cells IUHB, Switzerland. A phase I/II study of the safety and preliminary efficacy of intramedullary spinal cord transplantation of human central nervous system (CNS) stem cells (HuCNS-SC) in subjects with thoracic (T2-T11) spinal cord trauma. In: ClinicalTrials.gov (Internet). Stemcells.Inc: National Library of Medicine (US). 2011- (2012 May 25). Avaiable from: http://clinicaltrials.gov/show/NCT01321333 NLM Identifier: NCT01321333

  107. Huang WC, Kuo HS, Tsai MJ, Ma H, Chiu CW, Huang MC et al (2011) Adeno-associated virus-mediated human acidic fibroblast growth factor expression promotes functional recovery of spinal cord-contused rats. J Gene Med 13(5):283–289

    Article  PubMed  Google Scholar 

  108. Taha MF (2010) Cell based-gene delivery approaches for the treatment of spinal cord injury and neurodegenerative disorders. Curr Stem Cell Res Ther 5(1):23–36

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Holtz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Holtz, A., Anderberg, L., Berntsson, S.G., Aldskogius, H. (2013). Spinal Cord Injury: Modern Clinical Management and Its Correlation to Advances in Basic Science. In: Aldskogius, H. (eds) Animal Models of Spinal Cord Repair. Neuromethods, vol 76. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-197-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-197-4_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-196-7

  • Online ISBN: 978-1-62703-197-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics