Skip to main content

Path-LZerD: Predicting Assembly Order of Multimeric Protein Complexes

  • Protocol
  • First Online:
Protein-Protein Interaction Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2074))

Abstract

Many important functions in a cell are carried out by protein complexes with more than two subunits. Similar to the folding of a single protein, multimeric protein complexes in general follow an energetically favored assembly path. Knowing the assembly path not only provides critical information about the molecular mechanism of the assembly but also serves as a foundation for artificial design of protein complexes, as well as development of drugs that interfere with complex formation. There are experimental approaches for determining the assembly path of a complex; however, such methods are resource intensive. We have recently developed a computational method, Path-LZerD, which predicts the assembly path of a complex by simulating the docking process of the complex. Here, we explain how to use the Path-LZerD software with examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Englander SW, Mayne L (2014) The nature of protein folding pathways. Proc Natl Acad Sci U S A 111(45):15873–15880. https://doi.org/10.1073/pnas.1411798111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bale JB, Gonen S, Liu Y, Sheffler W, Ellis D, Thomas C, Cascio D, Yeates TO, Gonen T, King NP, Baker D (2016) Accurate design of megadalton-scale two-component icosahedral protein complexes. Science 353(6297):389–394. https://doi.org/10.1126/science.aaf8818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shin WH, Christoffer CW, Kihara D (2017) In silico structure-based approaches to discover protein-protein interaction-targeting drugs. Methods 131:22–32. https://doi.org/10.1016/j.ymeth.2017.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kennedy KA, Gachelet EG, Traxler B (2004) Evidence for multiple pathways in the assembly of the Escherichia coli maltose transport complex. J Biol Chem 279(32):33290–33297. https://doi.org/10.1074/jbc.M403796200

    Article  CAS  PubMed  Google Scholar 

  5. Mizushima S, Nomura M (1970) Assembly mapping of 30S ribosomal proteins from E. coli. Nature 226(5252):1214

    Article  CAS  Google Scholar 

  6. Hernandez H, Robinson CV (2007) Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry. Nat Protoc 2(3):715–726. https://doi.org/10.1038/nprot.2007.73

    Article  CAS  PubMed  Google Scholar 

  7. Davis JH, Tan YZ, Carragher B, Potter CS, Lyumkis D, Williamson JR (2016) Modular assembly of the bacterial large ribosomal subunit. Cell 167(6):1610–1622.e1615. https://doi.org/10.1016/j.cell.2016.11.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mulder AM, Yoshioka C, Beck AH, Bunner AE, Milligan RA, Potter CS, Carragher B, Williamson JR (2010) Visualizing ribosome biogenesis: parallel assembly pathways for the 30S subunit. Science 330(6004):673–677. https://doi.org/10.1126/science.1193220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Talkington MW, Siuzdak G, Williamson JR (2005) An assembly landscape for the 30S ribosomal subunit. Nature 438(7068):628–632. https://doi.org/10.1038/nature04261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sharon M, Witt S, Glasmacher E, Baumeister W, Robinson CV (2007) Mass spectrometry reveals the missing links in the assembly pathway of the bacterial 20 S proteasome. J Biol Chem 282(25):18448–18457. https://doi.org/10.1074/jbc.M701534200

    Article  CAS  PubMed  Google Scholar 

  11. Heck AJ (2008) Native mass spectrometry: a bridge between interactomics and structural biology. Nat Methods 5(11):927–933. https://doi.org/10.1038/nmeth.1265

    Article  CAS  PubMed  Google Scholar 

  12. Peterson LX, Togawa Y, Esquivel-Rodriguez J, Terashi G, Christoffer C, Roy A, Shin WH, Kihara D (2018) Modeling the assembly order of multimeric heteroprotein complexes. PLoS Comput Biol 14(1):e1005937. https://doi.org/10.1371/journal.pcbi.1005937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Marsh JA, Hernandez H, Hall Z, Ahnert SE, Perica T, Robinson CV, Teichmann SA (2013) Protein complexes are under evolutionary selection to assemble via ordered pathways. Cell 153(2):461–470. https://doi.org/10.1016/j.cell.2013.02.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Levy ED, Boeri Erba E, Robinson CV, Teichmann SA (2008) Assembly reflects evolution of protein complexes. Nature 453(7199):1262–1265. https://doi.org/10.1038/nature06942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Venkatraman V, Yang YD, Sael L, Kihara D (2009) Protein-protein docking using region-based 3D Zernike descriptors. BMC Bioinformatics 10:407. https://doi.org/10.1186/1471-2105-10-407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Esquivel-Rodriguez J, Yang YD, Kihara D (2012) Multi-LZerD: multiple protein docking for asymmetric complexes. Proteins 80(7):1818–1833. https://doi.org/10.1002/prot.24079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Esquivel-Rodriguez J, Filos-Gonzalez V, Li B, Kihara D (2014) Pairwise and multimeric protein-protein docking using the LZerD program suite. Methods Mol Biol 1137:209–234. https://doi.org/10.1007/978-1-4939-0366-5_15

    Article  CAS  PubMed  Google Scholar 

  18. Zhou H, Zhou Y (2002) Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Sci 11(11):2714–2726

    Article  CAS  Google Scholar 

  19. Zhou H, Skolnick J (2011) GOAP: a generalized orientation-dependent, all-atom statistical potential for protein structure prediction. Biophys J 101(8):2043–2052. https://doi.org/10.1016/j.bpj.2011.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang SY, Zou X (2011) Statistical mechanics-based method to extract atomic distance-dependent potentials from protein structures. Proteins 79(9):2648–2661. https://doi.org/10.1002/prot.23086

    Article  CAS  PubMed  Google Scholar 

  21. Dong GQ, Fan H, Schneidman-Duhovny D, Webb B, Sali A (2013) Optimized atomic statistical potentials: assessment of protein interfaces and loops. Bioinformatics 29(24):3158–3166. https://doi.org/10.1093/bioinformatics/btt560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lu M, Dousis AD, Ma J (2008) OPUS-PSP: an orientation-dependent statistical all-atom potential derived from side-chain packing. J Mol Biol 376(1):288–301. https://doi.org/10.1016/j.jmb.2007.11.033

    Article  CAS  PubMed  Google Scholar 

  23. McLachlan AD (1982) Rapid comparison of protein structures. Acta Cryst A38:871–873

    Article  CAS  Google Scholar 

  24. Kihara D, Sael L, Chikhi R, Esquivel-Rodriguez J (2011) Molecular surface representation using 3D Zernike descriptors for protein shape comparison and docking. Curr Protein Pept Sci 12(6):520–530

    Article  CAS  Google Scholar 

  25. Loew A, Ho YK, Blundell T, Bax B (1998) Phosducin induces a structural change in transducin beta gamma. Structure 6(8):1007–1019

    Article  CAS  Google Scholar 

  26. Dingus J, Hildebrandt JD (2012) Synthesis and assembly of G protein betagamma dimers: comparison of in vitro and in vivo studies. Subcell Biochem 63:155–180. https://doi.org/10.1007/978-94-007-4765-4_9

    Article  CAS  PubMed  Google Scholar 

  27. Abergel C, Monchois V, Byrne D, Chenivesse S, Lembo F, Lazzaroni JC, Claverie JM (2007) Structure and evolution of the ivy protein family, unexpected lysozyme inhibitors in Gram-negative bacteria. Proc Natl Acad Sci U S A 104(15):6394–6399. https://doi.org/10.1073/pnas.0611019104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Monchois V, Abergel C, Sturgis J, Jeudy S, Claverie JM (2001) Escherichia coli ykfE ORFan gene encodes a potent inhibitor of C-type lysozyme. J Biol Chem 276(21):18437–18441. https://doi.org/10.1074/jbc.M010297200

    Article  CAS  PubMed  Google Scholar 

  29. Maroufi B, Ranjbar B, Khajeh K, Naderi-Manesh H, Yaghoubi H (2008) Structural studies of hen egg-white lysozyme dimer: comparison with monomer. Biochim Biophys Acta 1784(7–8):1043–1049. https://doi.org/10.1016/j.bbapap.2008.03.010

    Article  CAS  PubMed  Google Scholar 

  30. Cegielska-Radziejewska R, Lesnierowski G, Kijowski J (2008) Properties and application of egg white lysozyme and its modified preparations-a review. Pol J Food Nutr Sci 58:5–10

    CAS  Google Scholar 

  31. Frank RA, Titman CM, Pratap JV, Luisi BF, Perham RN (2004) A molecular switch and proton wire synchronize the active sites in thiamine enzymes. Science 306(5697):872–876. https://doi.org/10.1126/science.1101030

    Article  CAS  PubMed  Google Scholar 

  32. Kato M, Wynn RM, Chuang JL, Tso SC, Machius M, Li J, Chuang DT (2008) Structural basis for inactivation of the human pyruvate dehydrogenase complex by phosphorylation: role of disordered phosphorylation loops. Structure 16(12):1849–1859. https://doi.org/10.1016/j.str.2008.10.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Tunde Aderinwale for testing this software. This work was partly supported by the National Institute of General Medical Sciences of the NIH (R01GM123055) and the National Science Foundation (DMS1614777).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Kihara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Terashi, G., Christoffer, C., Kihara, D. (2020). Path-LZerD: Predicting Assembly Order of Multimeric Protein Complexes. In: Canzar, S., Ringeling, F. (eds) Protein-Protein Interaction Networks. Methods in Molecular Biology, vol 2074. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9873-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9873-9_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9872-2

  • Online ISBN: 978-1-4939-9873-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics