Skip to main content

An Introductory Guide to Aligning Networks Using SANA, the Simulated Annealing Network Aligner

  • Protocol
  • First Online:
Protein-Protein Interaction Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2074))

Abstract

Sequence alignment has had an enormous impact on our understanding of biology, evolution, and disease. The alignment of biological networks holds similar promise. Biological networks generally model interactions between biomolecules such as proteins, genes, metabolites, or mRNAs. There is strong evidence that the network topology—the “structure” of the network—is correlated with the functions performed, so that network topology can be used to help predict or understand function. However, unlike sequence comparison and alignment—which is an essentially solved problem—network comparison and alignment is an NP-complete problem for which heuristic algorithms must be used.

Here we introduce SANA, the Simulated Annealing Network Aligner. SANA is one of many algorithms proposed for the arena of biological network alignment. In the context of global network alignment, SANA stands out for its speed, memory efficiency, ease-of-use, and flexibility in the arena of producing alignments between two or more networks. SANA produces better alignments in minutes on a laptop than most other algorithms can produce in hours or days of CPU time on large server-class machines. We walk the user through how to use SANA for several types of biomolecular networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Williamson MP, Sutcliffe MJ (2010) Protein–protein interactions. Portland Press Limited, London

    Book  Google Scholar 

  2. Jaenicke R, Helmreich E (2012) Protein-protein interactions, vol 23. Springer, Berlin

    Google Scholar 

  3. Davidson EH (2010) The regulatory genome: gene regulatory networks in development and evolution. Academic press, San Diego

    Google Scholar 

  4. Karlebach G, Shamir R (2008) Modelling and analysis of gene regulatory networks. Nature reviews. Mol Cell Biol 9(10):770

    Google Scholar 

  5. Chen K, Rajewsky N (2007) The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 8(2):93

    Article  CAS  Google Scholar 

  6. Prescott DM (2012) Cell biology a comprehensive treatise V3: gene expression: the production of RNA’s, vol 3. Elsevier, Amsterdam

    Google Scholar 

  7. Farazi TA, Hoell JI, Morozov P, Tuschl T (2013) Micrornas in human cancer. In: MicroRNA cancer regulation. Springer, Berlin, pp 1–20

    Google Scholar 

  8. Kotlyar M, Pastrello C, Sheahan N, Jurisica I (2015) Integrated interactions database: tissue-specific view of the human and model organism interactomes. Nucleic Acids Res 44(D1):536–541

    Article  Google Scholar 

  9. Tokar T, Pastrello C, Rossos AE, Abovsky M, Hauschild A-C, Tsay M, Lu R, Jurisica I (2017) mirdip 4.1—integrative database of human microRNA target predictions. Nucleic Acids Res 46(D1):360–370

    Article  Google Scholar 

  10. Fiehn O (2002) Metabolomics-the link between genotypes and phenotypes. In: Functional genomics. Springer, Berlin, pp 155–171

    Chapter  Google Scholar 

  11. Milano M, Guzzi PH, Tymofieva O, Xu D, Hess C, Veltri P, Cannataro M (2017) An extensive assessment of network alignment algorithms for comparison of brain connectomes. BMC Bioinf 18(6):235

    Article  Google Scholar 

  12. Junker BH, Schreiber F (2011) Analysis of biological networks, vol 2. Wiley, New York

    Google Scholar 

  13. Davis D, Yaveroğlu ÖN, Malod-Dognin N, Stojmirovic A, Pržulj N (2015) Topology-function conservation in protein–protein interaction networks. Bioinformatics 31(10):1632–1639. https://doi.org/10.1093/bioinformatics/btv026

    Article  CAS  Google Scholar 

  14. Sporns O (2010) Networks of the brain. MIT Press, Cambridge

    Book  Google Scholar 

  15. Kuchaiev O, Milenković T, Memišević V, Hayes W, Pržulj N (2010) Topological network alignment uncovers biological function and phylogeny. J R Soc Interface 7(50):1341–1354. https://doi.org/10.1098/rsif.2010.0063

    Article  Google Scholar 

  16. Van El CG, Cornel MC, Borry P, Hastings RJ, Fellmann F, Hodgson SV, Howard HC, Cambon-Thomsen A, Knoppers BM, Meijers-Heijboer H et al (2013) Whole-genome sequencing in health care: recommendations of the European society of human genetics. Eur J Hum Genet 21(6):580

    Article  Google Scholar 

  17. Cook SA (1971) The complexity of theorem-proving procedures. In: Proceedings of the third annual ACM symposium on theory of computing. ACM, New York, pp 151–158

    Google Scholar 

  18. Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. W.H. Freeman, New York

    Google Scholar 

  19. Von Mering C, Krause R, Snel B, Cornell M et al (2002) Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417(6887):399

    Article  Google Scholar 

  20. Malod-Dognin N, Pržulj N (2015) L-GRAAL: Lagrangian graphlet-based network aligner. Bioinformatics 31(13):2182–2189

    Article  CAS  Google Scholar 

  21. Saraph V, Milenković T (2014) Magna: maximizing accuracy in global network alignment. Bioinformatics 30(20):2931–2940

    Article  CAS  Google Scholar 

  22. Mamano N, Hayes WB (2017) SANA: simulated annealing far outperforms many other search algorithms for biological network alignment. Bioinformatics. https://doi.org/10.1093/bioinformatics/btx090

  23. Hashemifar S, Xu J (2014) HubAlign: an accurate and efficient method for global alignment of protein-protein interaction networks. Bioinformatics 30(17):438–444. https://doi.org/10.1093/bioinformatics/btu450

    Article  Google Scholar 

  24. Sun Y, Crawford J, Tang J, Milenković T (2015) Simultaneous optimization of both node and edge conservation in network alignment via WAVE. In: Pop M, Touzet H (eds) Algorithms in bioinformatics. Lecture notes in computer science, vol 9289. Springer, Berlin, pp 16–39. http://dx.doi.org/10.1007/978-3-662-48221-6_2

  25. Patro R, Kingsford C (2012) Global network alignment using multiscale spectral signatures. Bioinformatics 28(23):3105–3114. https://doi.org/10.1093/bioinformatics/bts592. http://bioinformatics.oxfordjournals.org/content/28/23/3105.full.pdf+html

  26. Vijayan V, Milenković T (2017) Aligning dynamic networks with dynawave. Bioinformatics 34(10):1795–1798

    Article  Google Scholar 

  27. Faisal FE, Meng L, Crawford J, Milenković T (2015) The post-genomic era of biological network alignment. EURASIP J Bioinforma Syst Biol 2015(1):3

    Article  Google Scholar 

  28. Pržulj N, Corneil DG, Jurisica I (2004) Modeling interactome: scale-free or geometric? Bioinformatics 20(18):3508–3515. https://doi.org/10.1093/bioinformatics/bth436. http://bioinformatics.oxfordjournals.org/content/20/18/3508.full.pdf+html

  29. Milenković T, Pržulj N (2008) Uncovering biological network function via graphlet degree signatures. Cancer Inform 6:257–273. (Epub 2008 Apr 14)

    Article  Google Scholar 

  30. Yaveroğlu N, Malod-Dognin N, Davis D, Levnajic Z, Janjic V, Stojmirovic RKA, Pržulj N (2014) Revealing the hidden language of complex networks. Sci Rep 4:4547

    Article  Google Scholar 

  31. Altschul SF et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  32. Kuchaiev O, Pržulj N (2011) Integrative network alignment reveals large regions of global network similarity in yeast and human. Bioinformatics 27:1390–1396. https://doi.org/bioinformatics/btr127

    Article  CAS  Google Scholar 

  33. The Gene Ontology Consortium (2008) The gene ontology project in 2008. Nucleic Acids Res 36(Suppl 1):440–444. https://doi.org/10.1093/nar/gkm883. http://nar.oxfordjournals.org/content/36/suppl_1/D440.full.pdf+html

  34. Hayes WB, Mamano N (2017) Sana netgo: a combinatorial approach to using gene ontology (go) terms to score network alignments. arXiv preprint, arXiv:1704.01205

    Google Scholar 

  35. Vijayan V, Saraph V, Milenković T (2015) Magna++: maximizing accuracy in global network alignment via both node and edge conservation. Bioinformatics. https://doi.org/10.1093/bioinformatics/btv161

  36. Pržulj N, Wigle D, Jurisica I (2004) Functional topology in a network of protein interactions. Bioinformatics 20(3):340–348

    Article  Google Scholar 

  37. Hočevar T, Demšar J (2014) A combinatorial approach to graphlet counting. Bioinformatics 30(4):559–565. https://doi.org/10.1093/bioinformatics/btt717

    Article  Google Scholar 

  38. Chatr-Aryamontri A, Oughtred R, Boucher L, Rust J, Chang C, Kolas NK, O’Donnell L, Oster S, Theesfeld C, Sellam A et al (2017) The biogrid interaction database: 2017 update. Nucleic Acids Res 45(D1):369–379

    Article  Google Scholar 

  39. Rossi RA, Zhou R, Ahmed NK (2017) Estimation of graphlet statistics. arXiv preprint, arXiv:1701.01772

    Google Scholar 

  40. Yang C, Lyu M, Li Y, Zhao Q, Xu Y (2018) SSRW: a scalable algorithm for estimating graphlet statistics based on random walk. In: International conference on database systems for advanced applications. Springer, Berlin, pp 272–288

    Chapter  Google Scholar 

  41. Hasan A, Chung P-C, Hayes W (2017) Graphettes: Constant-time determination of graphlet and orbit identity including (possibly disconnected) graphlets up to size 8. PLoS ONE 12(8):0181570

    Article  Google Scholar 

  42. Vidal M (2016) How much of the human protein interactome remains to be mapped? American Association for the Advancement of Science, Washington

    Google Scholar 

  43. Lesk A, Chothia C (1986) The response of protein structures to amino-acid sequence changes. Philos Trans R Soc Lond A 317(1540):345–356

    Article  CAS  Google Scholar 

  44. Clark C, Kalita J (2014) A comparison of algorithms for the pairwise alignment of biological networks. Bioinformatics 30(16):2351–2359

    Article  CAS  Google Scholar 

  45. Faisal FE, Meng L, Crawford J, Milenković T (2015) The post-genomic era of biological network alignment. EURASIP J Bioinforma Syst Biol 2015(1):1

    Article  Google Scholar 

  46. Guzzi PH, Milenković T (2017) Survey of local and global biological network alignment: the need to reconcile the two sides of the same coin. Brief Bioinform. https://doi.org/10.1093/bib/bbw132

  47. Kanne DP, Hayes WB (2017) SANA: separating the search algorithm from the objective function in biological network alignment, Part 1: Search. arXiv preprint, arXiv:1709.01464

    Google Scholar 

  48. Larsen SJ, Alkærsig FG, Ditzel HJ, Jurisica I, Alcaraz N, Baumbach J (2016) A simulated annealing algorithm for maximum common edge subgraph detection in biological networks. In: Proceedings of the 2016 on genetic and evolutionary computation conference. ACM, New York, 341–348

    Chapter  Google Scholar 

  49. Milenković T, Ng WL, Hayes W, Pržulj N (2010) Optimal network alignment with graphlet degree vectors. Cancer Informat 9:121–137. https://doi.org/10.4137/CIN.S4744

    Article  Google Scholar 

  50. Mehlhorn K, Naher S (1999) LEDA: a platform for combinatorial and geometric computing. Cambridge University Press, Cambridge

    Google Scholar 

  51. Clark C, Kalita J (2015) A multiobjective memetic algorithm for PPI network alignment. Bioinformatics 31(12):1988–1998. https://doi.org/10.1093/bioinformatics/btv063. http://bioinformatics.oxfordjournals.org/content/31/12/1988.full.pdf+html

  52. Smith KI, Everson RM, Fieldsend JE, Murphy C, Misra R (2008) Dominance-based multiobjective simulated annealing. IEEE Trans Evol Comput 12(3):323–342

    Article  Google Scholar 

  53. Neyshabur B, Khadem A, Hashemifar S, Arab SS (2013) Netal: a new graph-based method for global alignment of protein-protein interaction networks. Bioinformatics 29(13):1654–1662. https://doi.org/10.1093/bioinformatics/btt202. http://bioinformatics.oxfordjournals.org/content/29/13/1654.full.pdf+html

  54. Chindelevitch L, Ma C-Y, Liao C-S, Berger B (2013) Optimizing a global alignment of protein interaction networks. Bioinformatics 29(21):2765–2773. https://doi.org/10.1093/bioinformatics/btt486. http://bioinformatics.oxfordjournals.org/content/29/21/2765.full.pdf+html

  55. Aladağ AE, Erten C (2013) Spinal: scalable protein interaction network alignment. Bioinformatics 29(7):917–924. https://doi.org/10.1093/bioinformatics/btt071. http://bioinformatics.oxfordjournals.org/content/29/7/917.full.pdf+html

  56. Crawford J, Milenković T (2015) Great: graphlet edge-based network alignment. In: 2015 IEEE international conference on bioinformatics and biomedicine (BIBM). IEEE, Piscataway, pp 220–227

    Chapter  Google Scholar 

  57. El-Kebir M, Heringa J, Klau GW (2011) Lagrangian relaxation applied to sparse global network alignment. In: IAPR international conference on pattern recognition in bioinformatics. Springer, Berlin, pp 225–236

    Google Scholar 

  58. Ibragimov R, Malek M, Guo J, Baumbach J (2013) Gedevo: an evolutionary graph edit distance algorithm for biological network alignment. In: OASIcs-OpenAccess series in informatics, vol 34. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik

    Google Scholar 

  59. Malek M, Ibragimov R, Albrecht M, Baumbach J (2016) Cytogedevo: global alignment of biological networks with cytoscape. Bioinformatics 32(8):1259–1261

    Article  CAS  Google Scholar 

  60. Alkan F, Erten C (2014) Beams: backbone extraction and merge strategy for the global many-to-many alignment of multiple PPI networks. Bioinformatics 30(4):531–539

    Article  CAS  Google Scholar 

  61. Phan HT, Sternberg MJ (2012) Pinalog: a novel approach to align protein interaction networks—implications for complex detection and function prediction. Bioinformatics 28(9):1239–1245

    Article  CAS  Google Scholar 

  62. Resnik P (1995) Using information content to evaluate semantic similarity in a taxonomy. arXiv preprint cmp-lg/9511007

    Google Scholar 

  63. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene Ontology: tool for the unification of biology. Nat Genet 25(1):25–29. https://doi.org/10.1038/75556

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne B. Hayes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hayes, W.B. (2020). An Introductory Guide to Aligning Networks Using SANA, the Simulated Annealing Network Aligner. In: Canzar, S., Ringeling, F. (eds) Protein-Protein Interaction Networks. Methods in Molecular Biology, vol 2074. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9873-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9873-9_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9872-2

  • Online ISBN: 978-1-4939-9873-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics