Skip to main content

Native Protein Mass Spectrometry

  • Protocol
  • First Online:
Protein Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2073))

Abstract

In native mass spectrometry, non-covalent interactions are preserved in solution and through transfer to the gas phase. This technique can be used to characterize the composition, stoichiometry, and architecture of protein nano-assemblies, such as those observed in vivo or constructed through protein engineering in nanotechnology and synthetic biology. Here we describe an implementation of native mass spectrometry for studying protein-based nanostructures, including membrane proteins. Unambiguous structural details of assemblies can be rapidly determined due to the high resolution and mass accuracy afforded by mass spectrometry measurements including protein nano-assembly stoichiometry, heterogeneity, and ligand binding characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Leney AC, Heck AJR (2017) Native mass spectrometry: what is in the name? J Am Soc Mass Spectrom 28(1):5–13

    Article  CAS  PubMed  Google Scholar 

  2. Karas M, Bahr U, Dülcks T (2000) Nano-electrospray ionization mass spectrometry: addressing analytical problems beyond routine. Fresenius J Anal Chem 366(6):669–676

    Article  CAS  PubMed  Google Scholar 

  3. Benesch JLP (2009) Collisional activation of protein complexes: picking up the pieces. J Am Soc Mass Spectrom 20(3):341

    Article  CAS  PubMed  Google Scholar 

  4. O’Brien JP, Li W, Zhang Y, Brodbelt JS (2014) Characterization of native protein complexes using ultraviolet photodissociation mass spectrometry. J Am Chem Soc 136(37):12920–12928

    Article  PubMed  Google Scholar 

  5. Zhou M, Wysocki VH (2014) Surface induced dissociation: dissecting noncovalent protein complexes in the gas phase. Acc Chem Res 47(4):1010–1018

    Article  CAS  PubMed  Google Scholar 

  6. Zhang H, Cui W, Gross ML, Blankenship RE (2013) Native mass spectrometry of photosynthetic pigment–protein complexes. FEBS Lett 587(8):1012–1020

    Article  CAS  PubMed  Google Scholar 

  7. Lermyte F, Konijnenberg A, Williams JP, Brown JM, Valkenborg D, Sobott F (2014) ETD allows for native surface mapping of a 150 kDa noncovalent complex on a commercial Q-TWIMS-TOF instrument. J Am Soc Mass Spectrom 25(3):343–350

    Article  CAS  PubMed  Google Scholar 

  8. Liko I, Allison TM, Hopper JTS, Robinson CV (2016) Mass spectrometry guided structural biology. Curr Opin Struct Biol 40(Suppl C):136–144

    Article  CAS  PubMed  Google Scholar 

  9. Lai Y-T, Reading E, Hura GL, Tsai K-L, Laganowsky A, Asturias FJ, Tainer JA, Robinson CV, Yeates TO (2014) Structure of a designed protein cage that self-assembles into a highly porous cube. Nat Chem 6:1065

    Article  CAS  PubMed  Google Scholar 

  10. Sciore A, Su M, Koldewey P, Eschweiler JD, Diffley KA, Linhares BM, Ruotolo BT, Bardwell JCA, Skiniotis G, Marsh ENG (2016) Flexible, symmetry-directed approach to assembling protein cages. Proc Natl Acad Sci 113(31):8681–8686

    Article  CAS  PubMed  Google Scholar 

  11. Sahasrabuddhe A, Hsia Y, Busch F, Sheffler W, King NP, Baker D, Wysocki VH (2018) Confirmation of inter-subunit connectivity and topology of designed protein complexes by native mass spectrometry. Proc Natl Acad Sci U S A 115(6):1268–1273

    Article  CAS  PubMed  Google Scholar 

  12. Cubrilovic D, Haap W, Barylyuk K, Ruf A, Badertscher M, Gubler M, Tetaz T, Joseph C, Benz J, Zenobi R (2014) Determination of protein–ligand binding constants of a cooperatively regulated tetrameric enzyme using electrospray mass spectrometry. ACS Chem Biol 9(1):218–226

    Article  CAS  PubMed  Google Scholar 

  13. Ishii K, Noda M, Uchiyama S (2016) Mass spectrometric analysis of protein–ligand interactions. Biophys Physicobiol 13:87–95

    Article  CAS  PubMed  Google Scholar 

  14. Sobott F, Hernandez H, McCammon MG, Tito MA, Robinson CV (2002) A tandem mass spectrometer for improved transmission and analysis of large macromolecular assemblies. Anal Chem 74(6):1402–1407

    Article  CAS  PubMed  Google Scholar 

  15. van de Waterbeemd M, Fort KL, Boll D, Reinhardt-Szyba M, Routh A, Makarov A, Heck AJR (2017) High-fidelity mass analysis unveils heterogeneity in intact ribosomal particles. Nat Methods 14:283

    Article  PubMed  Google Scholar 

  16. Konermann L (2017) Addressing a common misconception: ammonium acetate as neutral pH “buffer” for native electrospray mass spectrometry. J Am Soc Mass Spectrom 28(9):1827–1835

    Article  CAS  PubMed  Google Scholar 

  17. Hernandez H, Robinson CV (2007) Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry. Nat Protoc 2(3):715–726

    Article  CAS  PubMed  Google Scholar 

  18. McKay AR, Ruotolo BT, Ilag LL, Robinson CV (2006) Mass measurements of increased accuracy resolve heterogeneous populations of intact ribosomes. J Am Chem Soc 128(35):11433–11442

    Article  CAS  PubMed  Google Scholar 

  19. Laganowsky A, Reading E, Hopper JT, Robinson CV (2013) Mass spectrometry of intact membrane protein complexes. Nat Protoc 8(4):639–651

    Article  CAS  PubMed  Google Scholar 

  20. Reading E, Liko I, Allison TM, Benesch JLP, Laganowsky A, Robinson CV (2015) The role of the detergent Micelle in preserving the structure of membrane proteins in the gas phase. Angew Chem Int Ed 54(15):4577–4581

    Article  CAS  Google Scholar 

  21. Laganowsky A, Reading E, Allison TM, Ulmschneider MB, Degiacomi MT, Baldwin AJ, Robinson CV (2014) Membrane proteins bind lipids selectively to modulate their structure and function. Nature 510(7503):172–175

    Article  CAS  PubMed  Google Scholar 

  22. Kirshenbaum N, Michaelevski I, Sharon M (2010) Analyzing large protein complexes by structural mass spectrometry. J Vis Exp 40:e1954

    Google Scholar 

  23. Fong KWY, Chan TWD (1999) A novel nonmetallized tip for electrospray mass spectrometry at nanoliter flow rate. J Am Soc Mass Spectrom 10(1):72–75

    Article  CAS  PubMed  Google Scholar 

  24. Marty MT, Baldwin AJ, Marklund EG, Hochberg GKA, Benesch JLP, Robinson CV (2015) Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles. Anal Chem 87(8):4370–4376

    Article  CAS  PubMed  Google Scholar 

  25. Liko I, Hopper JTS, Allison TM, Benesch JLP, Robinson CV (2016) Negative ions enhance survival of membrane protein complexes. J Am Soc Mass Spectrom 27(6):1099–1104

    Article  CAS  PubMed  Google Scholar 

  26. Yen H-Y, Hopper JTS, Liko I, Allison TM, Zhu Y, Wang D, Stegmann M, Mohammed S, Wu B, Robinson CV (2017) Ligand binding to a G protein–coupled receptor captured in a mass spectrometer. Sci Adv 3(6):e1701016

    Article  PubMed  Google Scholar 

  27. Mehmood S, Corradi V, Choudhury HG, Hussain R, Becker P, Axford D, Zirah S, Rebuffat S, Tieleman DP, Robinson CV, Beis K (2016) Structural and functional basis for lipid synergy on the activity of the antibacterial peptide ABC transporter McjD. J Biol Chem 291(41):21656–21668

    Article  CAS  PubMed  Google Scholar 

  28. Mehmood S, Marcoux J, Gault J, Quigley A, Michaelis S, Young SG, Carpenter EP, Robinson CV (2016) Mass spectrometry captures off-target drug binding and provides mechanistic insights into the human metalloprotease ZMPSTE24. Nat Chem 8:1152

    Article  CAS  PubMed  Google Scholar 

  29. Landreh M, Liko I, Uzdavinys P, Coincon M, Hopper JTS, Drew D, Robinson CV (2015) Controlling release, unfolding and dissociation of membrane protein complexes in the gas phase through collisional cooling. Chem Commun 51(85):15582–15584

    Article  CAS  Google Scholar 

  30. Hopper JT, Yu YT, Li D, Raymond A, Bostock M, Liko I, Mikhailov V, Laganowsky A, Benesch JL, Caffrey M, Nietlispach D, Robinson CV (2013) Detergent-free mass spectrometry of membrane protein complexes. Nat Methods 10(12):1206–1208

    Article  CAS  PubMed  Google Scholar 

  31. Ruotolo BT, Benesch JL, Sandercock AM, Hyung SJ, Robinson CV (2008) Ion mobility-mass spectrometry analysis of large protein complexes. Nat Protoc 3(7):1139–1152

    Article  CAS  PubMed  Google Scholar 

  32. Juraschek R, Dülcks T, Karas M (1999) Nanoelectrospray—more than just a minimized-flow electrospray ionization source. J Am Soc Mass Spectrom 10(4):300–308

    Article  CAS  PubMed  Google Scholar 

  33. Susa AC, Xia Z, Williams ER (2017) Small emitter tips for native mass spectrometry of proteins and protein complexes from nonvolatile buffers that mimic the intracellular environment. Anal Chem 89(5):3116–3122

    Article  CAS  PubMed  Google Scholar 

  34. Chernushevich IV, Bahr U, Karas M (2004) Nanospray ‘taxation’ and how to avoid it. Rapid Commun Mass Spectrom 18(20):2479–2485

    Article  CAS  PubMed  Google Scholar 

  35. Mortensen DN, Williams ER (2016) Surface-induced protein unfolding in submicron electrospray emitters. Anal Chem 88(19):9662–9668

    Article  CAS  PubMed  Google Scholar 

  36. Testa L, Brocca S, Grandori R (2011) Charge-surface correlation in electrospray ionization of folded and unfolded proteins. Anal Chem 83(17):6459–6463

    Article  CAS  PubMed  Google Scholar 

  37. Konermann L, Ahadi E, Rodriguez AD, Vahidi S (2013) Unraveling the mechanism of electrospray ionization. Anal Chem 85(1):2–9

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy M. Allison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Allison, T.M., Agasid, M.T. (2020). Native Protein Mass Spectrometry. In: Gerrard, J., Domigan, L. (eds) Protein Nanotechnology. Methods in Molecular Biology, vol 2073. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9869-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9869-2_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9868-5

  • Online ISBN: 978-1-4939-9869-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics