Skip to main content

Identification of Target Genes Mediated by Two-Component Regulators of Staphylococcus aureus Using RNA-seq Technology

  • Protocol
  • First Online:
Methicillin-Resistant Staphylococcus Aureus (MRSA) Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2069))

Abstract

Transcriptomics enables us to elucidate comprehensive gene expression profiles in given experimental conditions. Global regulators, which include transcriptional regulators and two-component regulatory systems, have evolved in a variety of bacterial systems. They play important roles in bacterial fitness and pathogenesis by regulating target gene expression. Advanced next-generation RNA sequencing technology (RNA-seq) provides a powerful and effective tool to analyze the transcriptome of bacterial cells. In this chapter, we provide a detailed procedure for the investigation of gene expression profiles and identification of target genes, regulons, and/or pathways that are mediated by a regulator. This procedure is done using RNA-seq analysis, which involves RNA purification, mRNA enrichment, decontamination, RNA-seq data analysis, and quantitative real-time reverse transcription PCR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hasin Y, Seldin M, Lusis A (2017) Multi-omics approaches to disease. Genome Biol 18:83

    Article  Google Scholar 

  2. Wacker SA, Houghtaling BR, Elemento O, Kapoor TM (2012) Using transcriptome sequencing to identify mechanisms of drug action and resistance. Nat Chem Biol 8:235–237

    Article  CAS  Google Scholar 

  3. Dunman P, Murphy E, Haney S, Palacios D, Tucker-Kellogg G, Wu S et al (2001) Transcription profiling-based identification of Staphylococcus aureus genes regulated by the agr and/or sarA loci. J Bacteriol 183:7341–7353

    Article  CAS  Google Scholar 

  4. Liang X, Zheng L, Landwehr C, Lunsford D, Holmes D, Ji Y (2005) Global regulation of gene expression by ArlRS, a two-component signal transduction regulatory system of Staphylococcus aureus. J Bacteriol 187:5486–5492

    Article  CAS  Google Scholar 

  5. Graveley BR (2008) Molecular biology: power sequencing. Nature 453:1197–1198

    Article  CAS  Google Scholar 

  6. Saliba AE, Santos SC, Vogel J (2017) New RNA-seq approaches for the study of bacterial pathogens. Curr Opin Microbiol 35:78–87

    Article  CAS  Google Scholar 

  7. Hegedus Z, Zakrzewska A, Agoston VC, Ordas A, Rácz P, Mink M et al (2009) Deep sequencing of the zebrafish transcriptome response to mycobacterium infection. Mol Immunol 46:2918–2930

    Article  CAS  Google Scholar 

  8. Ramsköld D, Wang ET, Burge CB, Sandberg R (2009) An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data. PLoS Comput Biol 5(12):e1000598

    Article  Google Scholar 

  9. Levin JZ, Berger MF, Adiconis X, Rogov P, Melnikov A, Fennell T et al (2009) Targeted next-generation sequencing of a cancer transcriptome enhances detection of sequence variants and novel fusion transcripts. Genome Biol 10(10):R115

    Article  Google Scholar 

  10. Gibbons JG, Janson EM, Hittinger CT, Johnston M, Abbot P, Rokas A (2009) Benchmarking next-generation transcriptome sequencing for functional and evolutionary genomics. Mol Biol Evol 26:2731–2744

    Article  CAS  Google Scholar 

  11. Metzker ML (2010) Sequencing technologies - the next generation. Nat Rev Genet 11:31–46

    Article  CAS  Google Scholar 

  12. Pinto AC, Melo-Barbosa HP, Miyoshi A, Silva A, Azevedo V (2011) Application of RNA-seq to reveal the transcript profile in bacteria. Genet Mol Res 10:1707–1718

    Article  CAS  Google Scholar 

  13. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  Google Scholar 

  14. Teng X, Xiao H (2009) Perspectives of DNA microarray and next-generation DNA sequencing technologies. Sci China C Life Sci 52:7–16

    Article  CAS  Google Scholar 

  15. Croucher NJ, Thomson NR (2010) Studying bacterial transcriptomes using RNA-seq. Curr Opin Microbiol 13:619–624

    Article  CAS  Google Scholar 

  16. Beaume M, Hernandez D, Docquier M, Docquier M, Delucinge-Vivier C, Descombes P, François P (2011) Orientation and expression of methicillin-resistant Staphylococcus aureus small RNAs by direct multiplexed measurements using the nCounter of NanoString technology. J Microbiol Methods 84:327–334

    Article  CAS  Google Scholar 

  17. Wilhelm J, Pingoud A (2003) Real-time polymerase chain reaction. Chembiochem 4:1120–1128

    Article  CAS  Google Scholar 

  18. Arya M, Shergill IS, Williamson M, Gommersall L, Arya N, Patel HR (2005) Basic principles of real-time quantitative PCR. Expert Rev Mol Diagn 5:209–219

    Article  CAS  Google Scholar 

  19. Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L (2011) Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol 12:R22. https://doi.org/10.1186/gb-2011-12-3-r22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lei T, Yang J, Ji Y (2015) Determination of essentiality and regulatory function of staphylococcal YeaZ in branched-chain amino acid biosynthesis. Virulence 6:75–84

    Article  CAS  Google Scholar 

  21. Fazzino L, Yang J, Ji Y (2019) Identification of genes co-regulated by two vraRS and phoPQ two-component systems in a hospital-associated methicillin-resistant Staphylococcus aureus WCUH29. (Unpublished data)

    Google Scholar 

  22. Lei T, Yang J, Ji Y (2019) Global regulation of gene expression by essential protein YeaZ in Staphylococcus aureus WCUH29. (Unpublished data)

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Juan E Abrahante Llorens at the University of Minnesota Informatics Institute (UMII) and Lisa Fazzino for the assistance with data analysis. This work was supported by grant AI057451 from the National Institute of Allergy and Infectious Disease and partially supported by grant MIN-63-082 and MIN-63-113 from CVM research Office UMN Ag Experimental Station General Agricultural Research Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinduo Ji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lei, T., Yang, J., Becker, A., Ji, Y. (2020). Identification of Target Genes Mediated by Two-Component Regulators of Staphylococcus aureus Using RNA-seq Technology. In: Ji, Y. (eds) Methicillin-Resistant Staphylococcus Aureus (MRSA) Protocols. Methods in Molecular Biology, vol 2069. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9849-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9849-4_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9848-7

  • Online ISBN: 978-1-4939-9849-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics