Skip to main content

Biochemical Estimation to Detect the Metabolic Pathways of Drosophila

  • Protocol
  • First Online:
Fundamental Approaches to Screen Abnormalities in Drosophila

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Regulation of the metabolic homeostasis is a prerequisite for all the animals for their growth and development. Thus, every organism developed strategies to maintain a balance between energy intake and expenditure. The imbalance in metabolism leads to a number of diseases such as obesity, diabetes, cardiovascular diseases and cancer. Besides the existence of structural variation between the organisms, the metabolic pathways are evolutionary conserved. Thus, the study of the metabolic pathways in a model system will help us to understand the role of metabolism in the onset of a disease. Drosophila melanogaster is evolving as an important model to study various metabolic disorders of humanbeing. This organism possesses physiological and metabolic similarity with mammals. Thus, various metabolic components like glucose, trehalose, protein and lipid associated with the fat-sensitive pathways as well as glucose-induced disorder can be checked using the fly model. The current chapter briefly employs various methods to quantify the metabolites from the larval as well as adult Drosophila tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Galgani J, Ravussin E (2009) Energy metabolism, fuel selection and body weight regulation. Int J Obes 32(S7):S109

    Article  Google Scholar 

  2. Moreno-Arriola E, Cárdenas-Rodríguez N, Coballase-Urrutia E, Pedraza-Chaverri J, Carmona-Aparicio L, Ortega-Cuellar D (2014) Caenorhabditis elegans: a useful model for studying metabolic disorders in which oxidative stress is a contributing factor. Oxidative medicine and cellular longevity 2014

    Google Scholar 

  3. Goldsworthy ME, Potter PK (2014) Modelling age-related metabolic disorders in the mouse. Mamm Genome 25(9–10):487–496

    Article  CAS  Google Scholar 

  4. Kennedy AJ, Ellacott KL, King VL, Hasty AH (2010) Mouse models of the metabolic syndrome. Dis Model Mech 3(3–4):156–166

    Article  CAS  Google Scholar 

  5. de Artinano AA, Castro MM (2009) Experimental rat models to study the metabolic syndrome. Br J Nutr 102(9):1246–1253

    Article  Google Scholar 

  6. Bharucha KN (2009) The epicurean fly: using Drosophila melanogaster to study metabolism. Pediatr Res 65(2):132

    Article  CAS  Google Scholar 

  7. Leopold P, Perrimon N (2007) Drosophila and the genetics of the internal milieu. Nature 450(7167):186

    Article  CAS  Google Scholar 

  8. Liu X, Hodgson JJ, Buchon N (2017) Drosophila as a model for homeostatic, antibacterial, and antiviral mechanisms in the gut. PLoS Pathog 13(5):e1006277

    Article  Google Scholar 

  9. Apidianakis Y, Rahme LG (2011) Drosophila melanogaster as a model for human intestinal infection and pathology. Dis Model Mech 4(1):21–30

    Article  CAS  Google Scholar 

  10. Baker KD, Thummel CS (2007) Diabetic larvae and obese flies—emerging studies of metabolism in Drosophila. Cell Metab 6(4):257–266

    Article  CAS  Google Scholar 

  11. Gutierrez E, Wiggins D, Fielding B, Gould AP (2007) Specialized hepatocyte-like cells regulate Drosophila lipid metabolism. Nature 445(7125):275

    Article  CAS  Google Scholar 

  12. Dubreuil RR (2004) Copper cells and stomach acid secretion in the Drosophila midgut. Int J Biochem Cell Biol 36(5):742–752

    Article  Google Scholar 

  13. Jennings BH (2011) Drosophila–a versatile model in biology & medicine. Mater Today 14(5):190–195

    Article  Google Scholar 

  14. Roberts DB (2006) Drosophila melanogaster: the model organism. Entomol Exp Appl 121(2):93–103

    Article  Google Scholar 

  15. Owusu-Ansah E, Perrimon N (2014) Modeling metabolic homeostasis and nutrient sensing in Drosophila: implications for aging and metabolic diseases. Dis Model Mech 7(3):343–350

    Article  Google Scholar 

  16. Tennessen JM, Barry WE, Cox J, Thummel CS (2014) Methods for studying metabolism in Drosophila. Methods 68(1):105–115

    Article  CAS  Google Scholar 

  17. Bergmeyer J, Grassl M (1974) Methods of enzymatic analysis, 3rd edn, vol I

    Google Scholar 

  18. Chen Q, Ma E, Behar KL, Xu T, Haddad GG (2002) Role of trehalose phosphate synthase in anoxia tolerance and development in Drosophila melanogaster. J Biol Chem 277(5):3274–3279

    Article  CAS  Google Scholar 

  19. Hildebrandt A, Bickmeyer I, Kühnlein RP (2011) Reliable Drosophila body fat quantification by a coupled colorimetric assay. PLoS One 6(9):e23796

    Article  CAS  Google Scholar 

  20. Rietveld A, Neutz S, Simons K, Eaton S (1999) Association of sterol-and glycosylphosphatidylinositol-linked proteins with Drosophila raft lipid microdomains. J Biol Chem 274(17):12049–12054

    Article  CAS  Google Scholar 

  21. Clark A, Gellman W (1985) A rapid spectrophotometric assay of triglycerides in Drosophila. Drosophila Inf Serv 61:190

    Google Scholar 

  22. Grönke S, Beller M, Fellert S, Ramakrishnan H, Jäckle H, Kühnlein RP (2003) Control of fat storage by a Drosophila PAT domain protein. Curr Biol 13(7):603–606

    Article  Google Scholar 

  23. Touchstone JC (1995) Thin-layer chromatographic procedures for lipid separation. J Chromatogr B Biomed Sci Appl 671(1–2):169–195

    Article  CAS  Google Scholar 

  24. Van Veldhoven PP, Swinnen JV, Esquenet M, Verhoeven G (1997) Lipase-based quantitation of triacylglycerols in cellular lipid extracts: requirement for presence of detergent and prior separation by thin-layer chromatography. Lipids 32(12):1297–1300

    Article  Google Scholar 

  25. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  Google Scholar 

  26. Stoscheck CM (1990) [6] Quantitation of protein. In: Methods in enzymology, vol 182. Elsevier, pp 50–68

    Google Scholar 

  27. He F (2011) Bradford protein assay. Bio-protocol 1(6):e45. https://doi.org/10.21769/BioProtoc.45

    Article  Google Scholar 

  28. Smith Pe KRI, Hermanson G, Mallia A, Gartner F, Provenzano M, Fujimoto E, Goeke N, Olson B, Klenk D (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150(1):76–85

    Article  Google Scholar 

  29. Bainor A, Chang L, McQuade TJ, Webb B, Gestwicki JE (2011) Bicinchoninic acid (BCA) assay in low volume. Anal Biochem 410(2):310–312

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SM is thankful to MHRD for financial support. MM lab is supported by Grant No. BT/PR21857/NNT/28/1238/2017, EMR/2017/003054, Odisha DBT 3325/ST(BIO)-02/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monalisa Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mukherjee, S., Mishra, M. (2020). Biochemical Estimation to Detect the Metabolic Pathways of Drosophila. In: Mishra, M. (eds) Fundamental Approaches to Screen Abnormalities in Drosophila. Springer Protocols Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9756-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9756-5_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-9755-8

  • Online ISBN: 978-1-4939-9756-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics