Skip to main content

Mapping the Saccharomyces cerevisiae Spatial Proteome with High Resolution Using hyperLOPIT

  • Protocol
  • First Online:
Yeast Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2049))

Abstract

The subcellular localization of proteins is a posttranslational modification of paramount importance. The ability to study subcellular and organelle proteomes improves our understanding of cellular homeostasis and cellular dynamics. In this chapter, we describe a protocol for the unbiased and high-throughput study of protein subcellular localization in the yeast Saccharomyces cerevisiae: hyperplexed localization of organelle proteins by isotope tagging (hyperLOPIT), which involves biochemical fractionation of Saccharomyces cerevisiae and high resolution mass spectrometry-based protein quantitation using TMT 10-plex isobaric tags. This protocol enables the determination of the subcellular localizations of thousands of proteins in parallel in a single experiment and thereby deep sampling and high-resolution mapping of the spatial proteome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Delic M, Valli M, Graf AB et al (2013) The secretory pathway: exploring yeast diversity. FEMS Microbiol Rev 37:872–914

    Article  CAS  PubMed  Google Scholar 

  2. Li SC, Kane PM (2009) The yeast lysosome-like vacuole: endpoint and crossroads. Biochim Biophys Acta 1793:650–663

    Article  CAS  PubMed  Google Scholar 

  3. Bardwell L (2005) A walk-through of the yeast mating pheromone response pathway. Peptides 26:339–350

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gancedo C, Flores C-L, Gancedo JM (2016) The expanding landscape of moonlighting proteins in yeasts. Microbiol Mol Biol Rev 80:765–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen XJ, Wang X, Kaufman BA et al (2005) Aconitase couples metabolic regulation to mitochondrial DNA maintenance. Science 80(307):714–717

    Article  CAS  Google Scholar 

  6. Hope IA, Struhl K (1986) Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of yeast. Cell 46:885–894

    Article  CAS  PubMed  Google Scholar 

  7. Nikolaev Y, Deillon C, Hoffmann SRK et al (2010) The leucine zipper domains of the transcription factors GCN4 and c-Jun have ribonuclease activity. PLoS One 5:e10765

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Palmer E, Freeman T (2004) Investigation into the use of C- and N-terminal GFP fusion proteins for subcellular localization studies using reverse transfection microarrays. Comp Funct Genomics 5:342–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stadler C, Rexhepaj E, Singan VR et al (2013) Immunofluorescence and fluorescent-protein tagging show high correlation for protein localization in mammalian cells. Nat Methods 10:315–323

    Article  CAS  PubMed  Google Scholar 

  10. Breker M, Gymrek M, Schuldiner M (2013) A novel single-cell screening platform reveals proteome plasticity during yeast stress responses. J Cell Biol 200:839–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huh W-K, Falvo JV, Gerke LC et al (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691

    Article  CAS  PubMed  Google Scholar 

  12. Li X-W, Rees JS, Xue P et al (2014) New insights into the DT40 B cell receptor cluster using a proteomic proximity labeling assay. J Biol Chem 289:14434–14447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hung V, Zou P, Rhee H-W et al (2014) Proteomic mapping of the human mitochondrial intermembrane space in live cells via ratiometric APEX tagging. Mol Cell 55:332–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Roux KJ, Kim DI, Raida M et al (2012) A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J Cell Biol 196:801–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rhee H-W, Zou P, Udeshi ND et al (2013) Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339:1328–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rees JS, Li X-W, Perrett S et al (2017) Selective proteomic proximity labeling assay using tyramide (SPPLAT): a quantitative method for the proteomic analysis of localized membrane-bound protein clusters. In: Current protocols in protein science. Wiley, Hoboken, NJ, pp 19.27.1–19.27.18

    Google Scholar 

  17. Christoforou A, Mulvey CM, Breckels LM et al (2016) A draft map of the mouse pluripotent stem cell spatial proteome. Nat Commun 7:9992

    Article  CAS  PubMed Central  Google Scholar 

  18. de Duve C (1971) Tissue fraction-past and present. J Cell Biol 50:20

    Article  PubMed  PubMed Central  Google Scholar 

  19. Foster LJ, de Hoog CL, Zhang Y et al (2006) A mammalian organelle map by protein correlation profiling. Cell 125:187–199

    Article  CAS  PubMed  Google Scholar 

  20. Itzhak DN, Tyanova S, Cox J et al (2016) Global, quantitative and dynamic mapping of protein subcellular localization. elife 5:e16950

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Jean Beltran PM, Mathias RA, Cristea IM et al (2016) A portrait of the human organelle proteome in space and time during cytomegalovirus infection. Cell Syst 3:361–373.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Itzhak DN, Davies C, Tyanova S et al (2017) A mass spectrometry-based approach for mapping protein subcellular localization reveals the spatial proteome of mouse primary neurons. Cell Rep 20:2706–2718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Christoforou A, Arias AM, Lilley KS (2014) Determining protein subcellular localization in mammalian cell culture with biochemical fractionation and iTRAQ 8-plex quantification. Methods Mol Biol 1156:157–174

    Article  CAS  PubMed  Google Scholar 

  24. Ross PL, Huang YN, Marchese JN et al (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169

    Article  CAS  PubMed  Google Scholar 

  25. Rieder SE, Emr SD (2001) Isolation of subcellular fractions from the yeast Saccharomyces cerevisiae. Curr Protoc Cell Biol 8:1–68

    Google Scholar 

  26. Sadowski PG, Dunkley TPJ, Shadforth IP et al (2006) Quantitative proteomic approach to study subcellular localization of membrane proteins. Nat Protoc 1:1778–1789

    Article  CAS  PubMed  Google Scholar 

  27. Dunkley TPJ, Hester S, Shadforth IP et al (2006) Mapping the Arabidopsis organelle proteome. Proc Natl Acad Sci U S A 103:6518–6523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thompson A, Schäfer J, Kuhn K et al (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75:1895–1904

    Article  CAS  PubMed  Google Scholar 

  29. McAlister GC, Nusinow DP, Jedrychowski MP et al (2014) MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal Chem 86:7150–7158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mulvey CM, Breckels LM, Geladaki A et al (2017) Using hyperLOPIT to perform high-resolution mapping of the spatial proteome. Nat Protoc 12:1110–1135

    Article  CAS  PubMed  Google Scholar 

  31. Thul PJ, Åkesson L, Wiking M et al (2017) A subcellular map of the human proteome. Science 356:eaal3321

    Article  CAS  PubMed  Google Scholar 

  32. Shliaha PV (2014) Investigation of protein abundance and localization by mass spectrometry and ion-mobility spectrometry-mass spectrometry methods. Dissertation, University of Cambridge

    Google Scholar 

  33. Breckels LM, Mulvey CM, Lilley KS et al (2016) A Bioconductor workflow for processing and analysing spatial proteomics data. F1000Res 5:2926

    Article  PubMed  Google Scholar 

  34. R Core Team (2017) R: a language and environment for statistical computing. https://www.r-project.org/

  35. Gatto L, Lilley KS (2012) Msnbase-an R/Bioconductor package for isobaric tagged mass spectrometry data visualization, processing and quantitation. Bioinformatics 28:288–289

    Article  CAS  PubMed  Google Scholar 

  36. Gatto L, Breckels LM, Wieczorek S et al (2014) Mass-spectrometry-based spatial proteomics data analysis using pRoloc and pRolocdata. Bioinformatics 30:1322–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gentleman RC, Carey VJ, Bates DM et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kizer KO, Xiao T, Strahl BD (2006) Accelerated nuclei preparation and methods for analysis of histone modifications in yeast. Methods 40:296–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang Y, Lilley KS, Oliver SG (2014) A protocol for the subcellular fractionation of Saccharomyces cerevisiae using nitrogen cavitation and density gradient centrifugation. Yeast 31:127–135

    Article  CAS  PubMed  Google Scholar 

  40. Villén J, Gygi SP (2008) The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat Protoc 3:1630–1638

    Article  PubMed  PubMed Central  Google Scholar 

  41. Breckels LM, Gatto L, Christoforou A et al (2013) The effect of organelle discovery upon sub-cellular protein localisation. J Proteome 88:129–140

    Article  CAS  Google Scholar 

  42. Breckels LM, Holden SB, Wojnar D et al (2016) Learning from heterogeneous data sources: an application in spatial proteomics. PLoS Comput Biol 12:e1004920

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Baker Brachmann C, Davies A, Cost GJ et al (1998) Designer deletion strains derived fromSaccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132

    Article  Google Scholar 

  44. Graham JM (2015) Fractionation of subcellular organelles. In: Current protocols in cell biology. Wiley, Hoboken, NJ, pp 3.1.1–3.1.22

    Google Scholar 

  45. Zhang R, Sioma CS, Wang S et al (2001) Fractionation of isotopically labeled peptides in quantitative proteomics. Anal Chem 73:5142–5149

    Article  CAS  PubMed  Google Scholar 

  46. Wenger CD, Lee MV, Hebert AS et al (2011) Gas-phase purification enables accurate, multiplexed proteome quantification with isobaric tagging. Nat Methods 8:933–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ting L, Rad R, Gygi SP et al (2011) MS3 eliminates ratio distortion in isobaric multiplexed quantitative proteomics. Nat Methods 8:937–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. McAlister GC, Huttlin EL, Haas W et al (2012) Increasing the multiplexing capacity of TMTs using reporter ion isotopologues with isobaric masses. Anal Chem 84:7469–7478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge funding from the BBSRC (CASE studentship BB/I016147/1 to K.S.L. and S.G.O.). We thank Mohamed Elzek for critical reading of the manuscript and suggestions on layout and content.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn S. Lilley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nightingale, D.J.H., Oliver, S.G., Lilley, K.S. (2019). Mapping the Saccharomyces cerevisiae Spatial Proteome with High Resolution Using hyperLOPIT. In: Oliver, S.G., Castrillo, J.I. (eds) Yeast Systems Biology. Methods in Molecular Biology, vol 2049. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9736-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9736-7_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9735-0

  • Online ISBN: 978-1-4939-9736-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics