Skip to main content

Immunostaining of the Embryonic and Larval Drosophila Brain

  • Protocol
  • First Online:
Brain Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2047))

  • 2258 Accesses

Abstract

Immunostaining is used to visualize the spatiotemporal expression pattern of developmental control genes that regulate the genesis and specification of the embryonic and larval brain of Drosophila. It is also used to visualize the effects of targeted misexpression or inactivation of disease-related genes. Immunostaining uses specific antibodies to mark expressed proteins and allows their localization to be traced. This method reveals insights into gene regulation, cell type specification, neuron and glial differentiation, axonal and synaptic scaffolding and posttranslational protein modifications underlying the patterning and specification of the maturing brain. Depending on the targeted protein, it is possible to visualize a multitude of regions of the Drosophila brain, such as small groups of neurons or glia, defined subcomponents of the brain’s axon scaffold, or pre- and postsynaptic structures of neurons. Thus, antibody probes that recognize defined tissues, cells, or subcellular structures like axons or synaptic terminals can be used as markers to identify and analyze phenotypes in embryos and larvae. Several antibodies, combined with different labels can be used concurrently to examine protein colocalization. This protocol spans over 3–4 days.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Skeath JB, Thor S (2003) Genetic control of Drosophila nerve cord development. Curr Opin Neurobiol 13:8–15

    Article  CAS  Google Scholar 

  2. Homem CC, Repic M, Knoblich JA (2015) Proliferation control in neural stem and progenitor cells. Nat Rev Neurosci 16:647–659

    Article  CAS  Google Scholar 

  3. Urbach R, Technau GM (2004) Neuroblast formation and patterning during early brain development in Drosophila. BioEssays 26:739–751

    Article  CAS  Google Scholar 

  4. Hirth F, Reichert H (1999) Conserved genetic programs in insect and mammalian brain development. BioEssays 21:677–684

    Article  CAS  Google Scholar 

  5. Venken KJ, Simpson JH, Bellen HJ (2011) Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron 72:202–230

    Article  CAS  Google Scholar 

  6. Shaw RE, Kottler B, Ludlow ZN, Buhl E, Kim D, Morais da Silva S, Miedzik A, Coum A, Hodge JJ, Hirth F, Sousa-Nunes R (2018) In vivo expansion of functionally integrated GABAergic interneurons by targeted increase in neural progenitors. EMBO J 37:e98163

    Article  Google Scholar 

  7. Diaper DC, Adachi Y, Lazarou L, Greenstein M, Simoes FA, Di Domenico A, Solomon DA, Lowe S, Alsubaie R, Cheng D, Buckley S, Humphrey DM, Shaw CE, Hirth F (2013) Drosophila TDP-43 dysfunction in glia and muscle cells cause cytological and behavioural phenotypes that characterize ALS and FTLD. Hum Mol Genet 22:3883–3893

    Article  CAS  Google Scholar 

  8. White KE, Humphrey DM, Hirth F (2010) The dopaminergic system in the aging brain of Drosophila. Front Neurosci 4:205

    Article  Google Scholar 

  9. Muqit MK, Feany MB (2002) Modelling neurodegenerative diseases in Drosophila: a fruitful approach? Nat Rev Neurosci 3:237–243

    Article  CAS  Google Scholar 

  10. Koizumi K, Higashida H, Yoo S et al (2007) RNA interference screen to identify genes required for Drosophila embryonic nervous system development. Proc Natl Acad Sci U S A 104:5626–5631

    Article  CAS  Google Scholar 

  11. Hirth F (2010) Drosophila melanogaster in the study of human neurodegeneration. CNS Neurol Disord Drug Targets 9:504–523

    Article  CAS  Google Scholar 

  12. Li T, Bellen HJ, Groves AK (2018) Using Drosophila to study mechanisms of hereditary hearing loss. Dis Model Mech 11:dmm031492

    Article  Google Scholar 

  13. Tsuji T, Higashida C, Yoshida Y et al (2011) Ect2, an ortholog of Drosophila’s pebble, negatively regulates neurite outgrowth in neuroblastoma × glioma hybrid NG108-15 cells. Cell Mol Neurobiol 31:663–668

    Article  CAS  Google Scholar 

  14. Venderova K, Kabbach G, Abdel-Messih E, Zhang Y, Parks RJ, Imai Y, Gehrke S, Ngsee J, Lavoie MJ, Slack RS, Rao Y, Zhang Z, Lu B, Haque ME, Park DS (2009) Leucine-Rich Repeat Kinase 2 interacts with Parkin, DJ-1 and PINK-1 in a Drosophila melanogaster model of Parkinson’s disease. Hum Mol Genet 18:4390–4404

    Article  CAS  Google Scholar 

  15. Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by The University of Iowa, Department of Biology, Iowa City, IA 52242. http://dshb.biology.uiowa.edu/

  16. Patel N (1994) Imaging neuronal subsets and other cell types in whole mount Drosophila emrbyos and larvae using antibody probes. In: Goldstein LSB, Fryberg E (eds) Methods in cell biology, vol 44. Drosophila melanogaster: practical uses in cell biology. Academic, New York. For an amended and updated version, follow the link: http://patelweb.berkeley.edu/Images/Protocols/pdf%20files/Antibody%20Methods%202006.pdf

    Google Scholar 

  17. Ashburner M (1989) Drosophila: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  18. Hoffman, G. (2008) Seeing is believing: use of antibodies in immunohistochemistry and in situ hybridization. In: Short course II of SfN’s 38 annual meeting: 15–19 November 2008. Society for Neuroscience, Washington, DC

    Google Scholar 

  19. Rothwell WF, Sullivan W (2000) Fluorescent analysis of Drosophila embryos. In: Sullivan W, Ashburner M, Hawley RS (eds) Drosophila protocols. Cold Spring Harbor Laboratory Press, New York, p 141

    Google Scholar 

  20. Bonaccorsi S, Giansanti MG, Cenci G, Gatti M (2012) Formaldehyde fixation of Drosophila testes. Cold Spring Harb Protoc:10.1101

    Google Scholar 

  21. Heimbeck G, Bugnon V, Gendre N, Häberlin C, Stocker RF (1999) Smell and taste perception in Drosophila melanogaster larva: toxin expression studies in chemosensory neurons. J Neurosci 19:6599–6609

    Article  CAS  Google Scholar 

  22. Stocker RF, Heimbeck G, Gendre N, de Belle JS (1997) Neuroblast ablation in Drosophila P[GAL4] lines reveals origins of olfactory interneurons. J Neurobiol 32:443–456

    Article  CAS  Google Scholar 

  23. Hassell J, Hand AR (1974) Tissue fixation with diimidoesters as an alternative to aldehydes. I. Comparison of cross-linking and ultrastructure obtained with dimethylsuberimidate and glutaraldehyde. J Histochem Cytochem 22:223–229

    Article  CAS  Google Scholar 

  24. Wieschaus E, Nüsslein-Volhard C (1998) Looking at embryos. In: Roberts DB (ed) Drosophila, a practical approach. Oxford University Press, New York, p 205

    Google Scholar 

  25. Ripper D, Schwarz H, Stierhof YD (2008) Cryo-section immunolabelling of difficult to preserve specimens: advantages of cryofixation, freeze-substitution and rehydration. Biol Cell 100:109–123

    Article  CAS  Google Scholar 

  26. Rebay I, Fehon R (2000) Generating antibodies against Drosophila proteins. In: Sullivan W, Ashburner M, Hawley RS (eds) Drosophila protocols. Cold Spring Harbor Laboratory Press, New York, p 400

    Google Scholar 

Download references

Acknowledgments

This work was supported by the UK Medical Research Council (G0701498; MR/L010666/1), the Biotechnology and Biological Sciences Research Council (BB/N001230/1), the MND Association (Hirth/Nov15/914-793; Hirth/Oct13/6202; Hirth/Mar12/6085; Hirth/Oct07/6233), and Alzheimer’s Research UK (Hirth/ARUK/2012) to F.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Hirth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hirth, F., Diaper, D.C. (2020). Immunostaining of the Embryonic and Larval Drosophila Brain. In: Sprecher, S. (eds) Brain Development. Methods in Molecular Biology, vol 2047. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9732-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9732-9_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9731-2

  • Online ISBN: 978-1-4939-9732-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics