Skip to main content

Secondary Insults in Experimental Traumatic Brain Injury: The Addition of Hypoxia

  • Protocol
  • First Online:
Animal Models of Neurotrauma

Part of the book series: Neuromethods ((NM,volume 149))

Abstract

Traumatic brain injury (TBI), with its secondary injury development, is the most common cause of death and disability among the young. One of the most frequent secondary insults that TBI patients suffer from is hypoxia, which could be due to obstructed airways at the scene of accident, injury to associated blood vessels, or thoracic injuries. Systemic hypoxia following TBI has been seen to lead to an increased neuronal death, a more detrimental neuroinflammatory response, and an unfavorable outcome. This condition may be mimicked in experimental TBI conditions where oxygen delivery is strictly controlled. In order to succeed in these types of experiments, monitoring of physiological parameters is paramount and in order to validate hypoxic conditions, peripheral oxygen saturation, O2 pressure (pO2) in the blood, or fraction of inhaled O2 (FiO2) could be used as goals. Different models of experimental TBI may be used to inflict the preferred injury type and the desired effects could then be assessed using radiological, physiological, biological and functional tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jeremitsky E, Omert L, Dunham CM, Protetch J, Rodriguez A (2003) Harbingers of poor outcome the day after severe brain injury: hypothermia, hypoxia, and hypoperfusion. J Trauma 54(2):312–319. https://doi.org/10.1097/01.TA.0000037876.37236.D6

    Article  PubMed  Google Scholar 

  2. Chi JH, Knudson MM, Vassar MJ, McCarthy MC, Shapiro MB, Mallet S, Holcroft JJ, Moncrief H, Noble J, Wisner D, Kaups KL, Bennick LD, Manley GT (2006) Prehospital hypoxia affects outcome in patients with traumatic brain injury: a prospective multicenter study. J Trauma 61(5):1134–1141. https://doi.org/10.1097/01.ta.0000196644.64653.d8

    Article  PubMed  Google Scholar 

  3. McHugh GS, Engel DC, Butcher I, Steyerberg EW, Lu J, Mushkudiani N, Hernandez AV, Marmarou A, Maas AI, Murray GD (2007) Prognostic value of secondary insults in traumatic brain injury: results from the IMPACT study. J Neurotrauma 24(2):287–293. https://doi.org/10.1089/neu.2006.0031

    Article  PubMed  Google Scholar 

  4. Jones PA, Andrews PJ, Midgley S, Anderson SI, Piper IR, Tocher JL, Housley AM, Corrie JA, Slattery J, Dearden NM et al (1994) Measuring the burden of secondary insults in head-injured patients during intensive care. J Neurosurg Anesthesiol 6(1):4–14

    Article  CAS  Google Scholar 

  5. Graham DI, Ford I, Adams JH, Doyle D, Teasdale GM, Lawrence AE, McLellan DR (1989) Ischaemic brain damage is still common in fatal non-missile head injury. J Neurol Neurosurg Psychiatry 52(3):346–350

    Article  CAS  Google Scholar 

  6. Yan EB, Hellewell SC, Bellander BM, Agyapomaa DA, Morganti-Kossmann MC (2011) Post-traumatic hypoxia exacerbates neurological deficit, neuroinflammation and cerebral metabolism in rats with diffuse traumatic brain injury. J Neuroinflammation 8:147. https://doi.org/10.1186/1742-2094-8-147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hellewell SC, Yan EB, Agyapomaa DA, Bye N, Morganti-Kossmann MC (2010) Post-traumatic hypoxia exacerbates brain tissue damage: analysis of axonal injury and glial responses. J Neurotrauma 27(11):1997–2010. https://doi.org/10.1089/neu.2009.1245

    Article  PubMed  Google Scholar 

  8. Yamamoto M, Marmarou CR, Stiefel MF, Beaumont A, Marmarou A (1999) Neuroprotective effect of hypothermia on neuronal injury in diffuse traumatic brain injury coupled with hypoxia and hypotension. J Neurotrauma 16(6):487–500

    Article  CAS  Google Scholar 

  9. Gao G, Oda Y, Wei EP, Povlishock JT (2010) The adverse pial arteriolar and axonal consequences of traumatic brain injury complicated by hypoxia and their therapeutic modulation with hypothermia in rat. J Cereb Blood Flow Metab 30(3):628–637. https://doi.org/10.1038/jcbfm.2009.235

    Article  PubMed  Google Scholar 

  10. Matsushita Y, Bramlett HM, Alonso O, Dietrich WD (2001) Posttraumatic hypothermia is neuroprotective in a model of traumatic brain injury complicated by a secondary hypoxic insult. Crit Care Med 29(11):2060–2066

    Article  CAS  Google Scholar 

  11. Thelin EP, Frostell A, Mulder J, Mitsios N, Damberg P, Aski SN, Risling M, Svensson M, Morganti-Kossmann MC, Bellander BM (2016) Lesion size is exacerbated in hypoxic rats whereas hypoxia-inducible factor-1 alpha and vascular endothelial growth factor increase in injured normoxic rats: a prospective cohort study of secondary hypoxia in focal traumatic brain injury. Front Neurol 7:23. https://doi.org/10.3389/fneur.2016.00023

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tanno H, Nockels RP, Pitts LH, Noble LJ (1992) Breakdown of the blood-brain barrier after fluid percussion brain injury in the rat: part 2: effect of hypoxia on permeability to plasma proteins. J Neurotrauma 9(4):335–347

    Article  CAS  Google Scholar 

  13. Ishige N, Pitts LH, Berry I, Carlson SG, Nishimura MC, Moseley ME, Weinstein PR (1987) The effect of hypoxia on traumatic head injury in rats: alterations in neurologic function, brain edema, and cerebral blood flow. J Cereb Blood Flow Metab 7(6):759–767. https://doi.org/10.1038/jcbfm.1987.131

    Article  CAS  PubMed  Google Scholar 

  14. Bramlett HM, Dietrich WD, Green EJ (1999) Secondary hypoxia following moderate fluid percussion brain injury in rats exacerbates sensorimotor and cognitive deficits. J Neurotrauma 16(11):1035–1047

    Article  CAS  Google Scholar 

  15. Clark RS, Kochanek PM, Dixon CE, Chen M, Marion DW, Heineman S, DeKosky ST, Graham SH (1997) Early neuropathologic effects of mild or moderate hypoxemia after controlled cortical impact injury in rats. J Neurotrauma 14(4):179–189

    Article  CAS  Google Scholar 

  16. Hallam TM, Floyd CL, Folkerts MM, Lee LL, Gong QZ, Lyeth BG, Muizelaar JP, Berman RF (2004) Comparison of behavioral deficits and acute neuronal degeneration in rat lateral fluid percussion and weight-drop brain injury models. J Neurotrauma 21(5):521–539. https://doi.org/10.1089/089771504774129865

    Article  PubMed  Google Scholar 

  17. Robertson CS, Valadka AB, Hannay HJ, Contant CF, Gopinath SP, Cormio M, Uzura M, Grossman RG (1999) Prevention of secondary ischemic insults after severe head injury. Crit Care Med 27(10):2086–2095

    Article  CAS  Google Scholar 

  18. Hellewell SC, Yan EB, Alwis DS, Bye N, Morganti-Kossmann MC (2013) Erythropoietin improves motor and cognitive deficit, axonal pathology, and neuroinflammation in a combined model of diffuse traumatic brain injury and hypoxia, in association with upregulation of the erythropoietin receptor. J Neuroinflammation 10:156. https://doi.org/10.1186/1742-2094-10-156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Strohl KP, Thomas AJ, St Jean P, Schlenker EH, Koletsky RJ, Schork NJ (1997) Ventilation and metabolism among rat strains. J Appl Physiol 82(1):317–323

    Article  CAS  Google Scholar 

  20. Bellander BM, Lidman O, Ohlsson M, Meijer B, Piehl F, Svensson M (2010) Genetic regulation of microglia activation, complement expression, and neurodegeneration in a rat model of traumatic brain injury. Exp Brain Res 205(1):103–114. https://doi.org/10.1007/s00221-010-2342-z

    Article  CAS  PubMed  Google Scholar 

  21. Al Nimer F, Lindblom R, Strom M, Guerreiro-Cacais AO, Parsa R, Aeinehband S, Mathiesen T, Lidman O, Piehl F (2013) Strain influences on inflammatory pathway activation, cell infiltration and complement cascade after traumatic brain injury in the rat. Brain Behav Immun 27(1):109–122. https://doi.org/10.1016/j.bbi.2012.10.002

    Article  CAS  PubMed  Google Scholar 

  22. Gunther M, Al Nimer F, Gahm C, Piehl F, Mathiesen T (2012) iNOS-mediated secondary inflammatory response differs between rat strains following experimental brain contusion. Acta Neurochir 154(4):689–697. https://doi.org/10.1007/s00701-012-1297-1

    Article  PubMed  Google Scholar 

  23. Carnaval TG, Sampaio RM, Lanfredi CB, Borsatti MA, Adde CA (2013) Effects of opioids on local anesthesia in the rat: a codeine and tramadol study. Braz Oral Res 27(6):455–462. https://doi.org/10.1590/S1806-83242013000600003

    Article  PubMed  Google Scholar 

  24. Matthes HW, Maldonado R, Simonin F, Valverde O, Slowe S, Kitchen I, Befort K, Dierich A, Le Meur M, Dolle P, Tzavara E, Hanoune J, Roques BP, Kieffer BL (1996) Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature 383(6603):819–823. https://doi.org/10.1038/383819a0

    Article  CAS  PubMed  Google Scholar 

  25. Anderson KJ, Scheff SW, Miller KM, Roberts KN, Gilmer LK, Yang C, Shaw G (2008) The phosphorylated axonal form of the neurofilament subunit NF-H (pNF-H) as a blood biomarker of traumatic brain injury. J Neurotrauma 25(9):1079–1085. https://doi.org/10.1089/neu.2007.0488

    Article  PubMed  PubMed Central  Google Scholar 

  26. Norris CM, Scheff SW (2009) Recovery of afferent function and synaptic strength in hippocampal CA1 following traumatic brain injury. J Neurotrauma 26(12):2269–2278. https://doi.org/10.1089/neu.2009.1029

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yanamoto H, Nagata I, Niitsu Y, Zhang Z, Xue JH, Sakai N, Kikuchi H (2001) Prolonged mild hypothermia therapy protects the brain against permanent focal ischemia. Stroke 32(1):232–239

    Article  CAS  Google Scholar 

  28. Rivard AL, Simura KJ, Mohammed S, Magembe AJ, Pearson HM, Hallman MR, Barnett SJ, Gatlin DL, Gallegos RP, Bianco RW (2006) Rat intubation and ventilation for surgical research. J Invest Surg 19(4):267–274. https://doi.org/10.1080/08941930600778297

    Article  PubMed  Google Scholar 

  29. Clark RS, Schiding JK, Kaczorowski SL, Marion DW, Kochanek PM (1994) Neutrophil accumulation after traumatic brain injury in rats: comparison of weight drop and controlled cortical impact models. J Neurotrauma 11(5):499–506

    Article  CAS  Google Scholar 

  30. Zweckberger K, Stoffel M, Baethmann A, Plesnila N (2003) Effect of decompression craniotomy on increase of contusion volume and functional outcome after controlled cortical impact in mice. J Neurotrauma 20(12):1307–1314. https://doi.org/10.1089/089771503322686102

    Article  PubMed  Google Scholar 

  31. Shear DA, Dixon CE, Bramlett HM, Mondello S, Dietrich WD, Deng-Bryant Y, Schmid KE, Wang KK, Hayes RL, Povlishock JT, Kochanek PM, Tortella FC (2016) Nicotinamide treatment in traumatic brain injury: operation brain trauma therapy. J Neurotrauma 33(6):523–537. https://doi.org/10.1089/neu.2015.4115

    Article  PubMed  Google Scholar 

  32. Friess SH, Lapidus JB, Brody DL (2015) Decompressive craniectomy reduces white matter injury after controlled cortical impact in mice. J Neurotrauma 32(11):791–800. https://doi.org/10.1089/neu.2014.3564

    Article  PubMed  PubMed Central  Google Scholar 

  33. Coleman TG (1980) Arterial baroreflex control of heart rate in the conscious rat. Am J Phys 238(4):H515–H520

    CAS  Google Scholar 

  34. Plehm R, Barbosa ME, Bader M (2006) Animal models for hypertension/blood pressure recording. Methods Mol Med 129:115–126. https://doi.org/10.1385/1-59745-213-0:115

    Article  PubMed  Google Scholar 

  35. Bratton SL, Chestnut RM, Ghajar J, McConnell Hammond FF, Harris OA, Hartl R, Manley GT, Nemecek A, Newell DW, Rosenthal G, Schouten J, Shutter L, Timmons SD, Ullman JS, Videtta W, Wilberger JE, Wright DW (2007) Guidelines for the management of severe traumatic brain injury. I. Blood pressure and oxygenation. J Neurotrauma 24(Suppl 1):S7–S13. https://doi.org/10.1089/neu.2007.9995

    Article  PubMed  Google Scholar 

  36. Allardet-Servent J, Forel JM, Roch A, Guervilly C, Chiche L, Castanier M, Embriaco N, Gainnier M, Papazian L (2009) FiO2 and acute respiratory distress syndrome definition during lung protective ventilation. Crit Care Med 37(1):202–207. https://doi.org/10.1097/CCM.0b013e31819261db

    Article  CAS  PubMed  Google Scholar 

  37. Rolett EL, Azzawi A, Liu KJ, Yongbi MN, Swartz HM, Dunn JF (2000) Critical oxygen tension in rat brain: a combined (31)P-NMR and EPR oximetry study. Am J Physiol Regul Integr Comp Physiol 279(1):R9–R16

    Article  CAS  Google Scholar 

  38. Reivich M (1964) Arterial Pco2 and cerebral hemodynamics. Am J Phys 206:25–35

    Article  CAS  Google Scholar 

  39. Kusaka G, Calvert JW, Smelley C, Nanda A, Zhang JH (2004) New lumbar method for monitoring cerebrospinal fluid pressure in rats. J Neurosci Methods 135(1–2):121–127. https://doi.org/10.1016/j.jneumeth.2003.12.013

    Article  PubMed  Google Scholar 

  40. Pegg CC, He C, Stroink AR, Kattner KA, Wang CX (2010) Technique for collection of cerebrospinal fluid from the cisterna magna in rat. J Neurosci Methods 187(1):8–12. https://doi.org/10.1016/j.jneumeth.2009.12.002

    Article  PubMed  Google Scholar 

  41. Zhang X, Deguchi K, Yamashita T, Ohta Y, Shang J, Tian F, Liu N, Panin VL, Ikeda Y, Matsuura T, Abe K (2010) Temporal and spatial differences of multiple protein expression in the ischemic penumbra after transient MCAO in rats. Brain Res 1343:143–152. https://doi.org/10.1016/j.brainres.2010.04.027

    Article  CAS  PubMed  Google Scholar 

  42. Chen M, Clark RS, Kochanek PM, Chen J, Schiding JK, Stetler RA, Simon RP, Graham SH (1998) 72-kDa heat shock protein and mRNA expression after controlled cortical impact injury with hypoxemia in rats. J Neurotrauma 15(3):171–181

    Article  CAS  Google Scholar 

  43. Mayer J (2007) Use of behavior analysis to recognize pain in small mammals. Lab Anim 36(6):43–48. https://doi.org/10.1038/laban0607-43

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Sophie Ankarcrona for her help with the language revision of the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Peter Thelin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lindblad, C., Thelin, E.P. (2019). Secondary Insults in Experimental Traumatic Brain Injury: The Addition of Hypoxia. In: Risling, M., Davidsson, J. (eds) Animal Models of Neurotrauma. Neuromethods, vol 149. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9711-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9711-4_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9709-1

  • Online ISBN: 978-1-4939-9711-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics