Skip to main content

Biophysical Techniques to Analyze Elastic Tissue Extracellular Matrix Proteins Interacting with ADAMTS Proteins

  • Protocol
  • First Online:
ADAMTS Proteases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2043))

  • 1365 Accesses

Abstract

Multidomain matrix-associated zinc extracellular proteases ADAMTS and ADAMTS-like proteins have important biological activities in cells and tissues. Beyond their traditional role in procollagen and von Willebrand factor processing and proteoglycan cleavage, ADAMTS/ADAMTSL likely participate in or at least have some role in ECM assembly as some of these proteins bind ECM proteins including fibrillins, fibronectin, and LTBPs. In this chapter, we present four biophysical techniques largely used for the characterization, multimerization, and interaction of proteins: surface plasmon resonance spectroscopy, dynamic light scattering, atomic force microscopy, and circular dichroism spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Apte SS (2004) A disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motifs: the ADAMTS family. Int J Biochem Cell Biol 36:981–985

    Article  CAS  Google Scholar 

  2. Kelwick R, Desanlis I, Wheeler GN et al (2015) The ADAMTS (A disintegrin and metalloproteinase with thrombospondin motifs) family. Genome Biol 16:113

    Article  Google Scholar 

  3. Isogai Z, Aspberg A, Keene DR et al (2002) Versican interacts with fibrillin-1 and links extracellular microfibrils to other connective tissue networks. J Biol Chem 277:4565–4572

    Article  CAS  Google Scholar 

  4. Hubmacher D, Apte SS (2011) Genetic and functional linkage between ADAMTS superfamily proteins and fibrillin-1: a novel mechanism influencing microfibril assembly and function. Cell Mol Life Sci 68:3137–3148

    Article  CAS  Google Scholar 

  5. Tsutsui K, Manabe R, Yamada T et al (2010) ADAMTSL-6 is a novel extracellular matrix protein that binds to fibrillin-1 and promotes fibrillin-1 fibril formation. J Biol Chem 285:4870–4882

    Article  CAS  Google Scholar 

  6. Hubmacher D, Wang LW, Mecham RP et al (2015) Adamtsl2 deletion results in bronchial fibrillin microfibril accumulation and bronchial epithelial dysplasia – a novel mouse model providing insights into geleophysic dysplasia. Dis Model Mech 8:487–499

    Article  CAS  Google Scholar 

  7. Wang LW, Kutz WE, Mead TJ et al (2019) Adamts10 inactivation in mice leads to persistence of ocular microfibrils subsequent to reduced fibrillin-2 cleavage. Matrix Biol. https://doi.org/10.1016/j.matbio.2018.09.004

    Article  CAS  Google Scholar 

  8. Robertson IB, Horiguchi M, Zilberberg L et al (2015) Latent TGF-beta-binding proteins. Matrix Biol 47:44–53

    Article  CAS  Google Scholar 

  9. Bekhouche M, Leduc C, Dupont L et al (2016) Determination of the substrate repertoire of ADAMTS2, 3, and 14 significantly broadens their functions and identifies extracellular matrix organization and TGF-beta signaling as primary targets. FASEB J 30:1741–1756

    Article  CAS  Google Scholar 

  10. Schnellmann R, Sack R, Hess D et al (2018) A selective extracellular matrix proteomics approach identifies fibronectin proteolysis by a disintegrin-like and metalloprotease domain with thrombospondin type 1 motifs (ADAMTS16) and its impact on spheroid morphogenesis. Mol Cell Proteomics 17:1410–1425

    Article  CAS  Google Scholar 

  11. Sengle G, Tsutsui K, Keene DR et al (2012) Microenvironmental regulation by fibrillin-1. PLoS Genet 8:e1002425

    Article  CAS  Google Scholar 

  12. Le Goff C, Cormier-Daire V (2011) The ADAMTS(L) family and human genetic disorders. Hum Mol Genet 20:R163–R167

    Article  Google Scholar 

  13. Kutz WE, Wang LW, Bader HL et al (2011) ADAMTS10 protein interacts with fibrillin-1 and promotes its deposition in extracellular matrix of cultured fibroblasts. J Biol Chem 286:17156–17167

    Article  CAS  Google Scholar 

  14. Hubmacher D, Schneider M, Berardinelli SJ et al (2017) Unusual life cycle and impact on microfibril assembly of ADAMTS17, a secreted metalloprotease mutated in genetic eye disease. Sci Rep 7:41871

    Article  CAS  Google Scholar 

  15. Nelea V, Nakano Y, Kaartinen MT (2008) Size distribution and molecular associations of plasma Fibronectin and Fibronectin crosslinked by transglutaminase 2. Protein J 27:223–233

    Article  CAS  Google Scholar 

  16. Hubmacher D, El-Hallous EI, Nelea V et al (2008) Biogenesis of extracellular microfibrils: multimerization of the fibrillin-1 C terminus into bead-like structures enables self-assembly. Proc Natl Acad Sci U S A 105:6548–6553

    Article  CAS  Google Scholar 

  17. Yeo GC, Baldock C, Wise SG et al (2014) A negatively charged residue stabilizes the tropoelastin N-terminal region for elastic fiber assembly. J Biol Chem 289:34815–34826

    Article  Google Scholar 

  18. Eckersley A, Mellody KT, Pilkington S et al (2018) Structural and compositional diversity of fibrillin microfibrils in human tissues. J Biol Chem 293:5117–5133

    Article  CAS  Google Scholar 

  19. Sherratt MJ, Holmes DF, Shuttleworth CA et al (2004) Substrate-dependent morphology of supramolecular assemblies: fibrillin and type-VI collagen microfibrils. Biophys J 86:3211–3222

    Article  CAS  Google Scholar 

  20. Nelea V, Kaartinen MT (2010) Periodic beaded-filament assembly of fibronectin on negatively charged surface. J Struct Biol 170:50–59

    Article  CAS  Google Scholar 

  21. Djokic J, Fagotto-Kaufmann C, Bartels R et al (2013) Fibulin-3,-4, and-5 are highly susceptible to proteolysis, interact with cells and heparin, and form multimers. J Biol Chem 288:22821–22835

    Article  CAS  Google Scholar 

  22. Reinhardt DP, Mechling DE, Boswell BA et al (1997) Calcium determines the shape of fibrillin. J Biol Chem 272:7368–7373

    Article  CAS  Google Scholar 

  23. Lauer-Fields JL, Minond D, Sritharan T et al (2007) Substrate conformation modulates aggrecanase (ADAMTS-4) affinity and sequence specificity - Suggestion of a common topological specificity for functionally diverse proteases. J Biol Chem 282:142–150

    Article  CAS  Google Scholar 

  24. Douzi B (2017) Protein-protein Interactions: surface plasmon resonance. Methods Mol Biol 1615:257–275

    Article  Google Scholar 

  25. Goldburg WI (1999) Dynamic light scattering. Am J Physiol 67:1152–1160

    Article  Google Scholar 

  26. Stetefeld J, McKenna SA, Patel TR (2016) Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev 8:409–427

    Article  CAS  Google Scholar 

  27. Koppel DE (1972) Analysis of macromolecular polydispersity in intensity correlation spectroscopy - method of cumulants. J Chem Phys 57:4814–4820

    Article  CAS  Google Scholar 

  28. Provencher SW (1982) Contin - a general-purpose constrained regularization program for inverting noisy linear algebraic and integral-equations. Comput Phys Commun 27:229–242

    Article  Google Scholar 

  29. Provencher SW (1982) A constrained regularization method for inverting data represented by linear algebraic or integral-equations. Comput Phys Commun 27:213–227

    Article  Google Scholar 

  30. Hansma HG, Kim KJ, Laney DE et al (1997) Properties of biomolecules measured from atomic force microscope images: a review. J Struct Biol 119:99–108

    Article  CAS  Google Scholar 

  31. Santos NC, Castanho MARB (2004) An overview of the biophysical applications of atomic force microscopy. Biophys Chem 107:133–149

    Article  CAS  Google Scholar 

  32. Whited AM, Park PSH (2014) Atomic force microscopy: a multifaceted tool to study membrane proteins and their interactions with ligands. Biochim Biophys Acta 1838:56–68

    Article  CAS  Google Scholar 

  33. Greenfield NJ (2006) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1:2876–2890

    Article  CAS  Google Scholar 

  34. Whitmore L, Wallace BA (2008) Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89:392–400

    Article  CAS  Google Scholar 

  35. Sreerama N, Woody RW (1993) A self-consistent method for the analysis of protein secondary structure from circular-dichroism. Biophys J 64:A170–A170

    Google Scholar 

  36. Sreerama N, Venyaminov SY, Woody RW (1999) Estimation of the number of alpha-helical and beta-strand segments in proteins using CD spectroscopy. Biophys J 76:A381–A381

    Google Scholar 

  37. Provencher SW, Glockner J (1981) Estimation of globular protein secondary structure from circular-dichroism. Biochemistry 20:33–37

    Article  CAS  Google Scholar 

  38. Vanstokkum IHM, Spoelder HJW, Bloemendal M et al (1990) Estimation of protein secondary structure and error analysis from circular-dichroism spectra. Anal Biochem 191:110–118

    Article  CAS  Google Scholar 

  39. Compton LA, Johnson WC (1986) Analysis of protein circular-dichroism spectra for secondary structure using a simple matrix multiplication. Anal Biochem 155:155–167

    Article  CAS  Google Scholar 

  40. Manavalan P, Johnson WC (1987) Variable selection method improves the prediction of protein secondary structure from circular-dichroism spectra. Anal Biochem 167:76–85

    Article  CAS  Google Scholar 

  41. Sreerama N, Woody RW (2000) Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem 287:252–260

    Article  CAS  Google Scholar 

  42. Andrade MA, Chacon P, Merelo JJ et al (1993) Evaluation of secondary structure of proteins from Uv circular-dichroism spectra using an unsupervised learning neural-network. Protein Eng 6:383–390

    Article  CAS  Google Scholar 

  43. Abdul-Gader A, Miles AJ, Wallace BA (2011) A reference dataset for the analyses of membrane protein secondary structures and transmembrane residues using circular dichroism spectroscopy. Bioinformatics 27:1630–1636

    Article  CAS  Google Scholar 

  44. Evans P, Bateman OA, Slingsby C et al (2007) A reference dataset for circular dichroism spectroscopy tailored for the beta gamma-crystallin lens proteins. Exp Eye Res 84:1001–1008

    Article  CAS  Google Scholar 

  45. Lees JG, Miles AJ, Wien F et al (2006) A reference database for circular dichroism spectroscopy covering fold and secondary structure space. Bioinformatics 22:1955–1962

    Article  CAS  Google Scholar 

  46. Sreerama N, Venyaminov SY, Woody RW (2000) Estimation of protein secondary structure from circular dichroism spectra: inclusion of denatured proteins with native proteins in the analysis. Anal Biochem 287:243–251

    Article  CAS  Google Scholar 

  47. Whitmore L, Wallace BA (2004) DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res 32:W668–W673

    Article  CAS  Google Scholar 

  48. Lobley A, Whitmore L, Wallace BA (2002) DICHROWEB: an interactive website for the analysis of protein secondary structure from circular dichroism spectra. Bioinformatics 18:211–212

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter P. Reinhardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nelea, V., Reinhardt, D.P. (2020). Biophysical Techniques to Analyze Elastic Tissue Extracellular Matrix Proteins Interacting with ADAMTS Proteins. In: Apte, S. (eds) ADAMTS Proteases. Methods in Molecular Biology, vol 2043. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9698-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9698-8_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9697-1

  • Online ISBN: 978-1-4939-9698-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics