Skip to main content

A Coinfection Model to Evaluate Chlamydia Inc Protein Interactions

  • Protocol
  • First Online:
Chlamydia trachomatis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2042))

Abstract

Chlamydia trachomatis resides and replicates within a membranous vacuole, termed the inclusion. A group of Type III secreted effector proteins, the inclusion membrane proteins (Inc), are embedded within the inclusion membrane and facilitate the interaction of the inclusion with host cell organelles. These interactions are vital for bacterial replication and allow for the acquisition of essential nutrients from the host cell. However, it is not known if Inc proteins function independently or require interactions with other Inc proteins to function. This chapter describes a system to test the homotypic/heterotypic interactions of Inc proteins through the coinfection of Chlamydia strains expressing differently tagged inclusion membrane proteins. Our approach takes advantage of the natural homotypic fusion of inclusions and allows for the study of Inc protein interactions when they are embedded within the inclusion membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Malhotra M, Sood S, Mukherjee A, Muralidhar S, Bala M (2013) Genital Chlamydia trachomatis: an update. Indian J Med Res 138:303–316

    PubMed  PubMed Central  Google Scholar 

  2. Moulder JW (1991) Interaction of chlamydiae and host cells in vitro. Microbiol Rev 55:143–190

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Elwell C, Mirrashidi K, Engel J, Francisco S (2016) Chlamydia cell biology and pathogenesis. Nat Rev Microbiol 14:385–400. https://doi.org/10.1038/nrmicro.2016.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mueller KE, Plano GV, Fields KA (2014) New frontiers in type III secretion biology: the chlamydia perspective. Infect Immun 82:2–9. https://doi.org/10.1128/IAI.00917-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dehoux P, Flores R, Dauga C, Zhong G, Subtil A (2011) Multi-genome identification and characterization of chlamydiae-specific type III secretion substrates: the Inc proteins. BMC Genomics 12:109. https://doi.org/10.1186/1471-2164-12-109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lutter EI, Martens C, Hackstadt T (2012) Evolution and conservation of predicted inclusion membrane proteins in chlamydiae. Comp Funct Genomics 2012:362104. https://doi.org/10.1155/2012/362104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Moore ER, Ouellette SP (2014) Reconceptualizing the chlamydial inclusion as a pathogen-specified parasitic organelle: an expanded role for Inc proteins. Front Cell Infect Microbiol 4:1–10. https://doi.org/10.3389/fcimb.2014.00157

    Article  CAS  Google Scholar 

  8. Bannantine JP, Griffiths RS, Viratyosin W, Brown WJ, Rockey DD (2000) A secondary structure motif predictive of protein localization to the chlamydial inclusion membrane. Cell Microbiol 2:35–47. https://doi.org/10.1046/j.1462-5822.2000.00029.x

    Article  CAS  PubMed  Google Scholar 

  9. Hackstadt T, Scidmore-Carlson MA, Shaw EI, Fischer ER (1999) The Chlamydia trachomatis IncA protein is required for homotypic vesicle fusion. Cell Microbiol 1:119–130. https://doi.org/10.1046/j.1462-5822.1999.00012.x

    Article  CAS  PubMed  Google Scholar 

  10. Scidmore MA, Hackstadt T (2001) Mammalian 14-3-3β associates with the Chlamydia trachomatis inclusion membrane via its interaction with IncG. Mol Microbiol 39:1638–1650. https://doi.org/10.1046/j.1365-2958.2001.02355.x

    Article  CAS  PubMed  Google Scholar 

  11. Rzomp KA, Moorhead AR, Scidmore MA (2006) The GTPase Rab4 interacts with Chlamydia trachomatis inclusion membrane protein CT229. Infect Immun 74:5362–5373. https://doi.org/10.1128/IAI.00539-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Derré I, Swiss R, Agaisse H (2011) The lipid transfer protein CERT interacts with the Chlamydia inclusion protein IncD and participates to ER-Chlamydia inclusion membrane contact sites. PLoS Pathog 7:e1002092. https://doi.org/10.1371/journal.ppat.1002092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Agaisse H, Derré I (2014) Expression of the effector protein IncD in Chlamydia trachomatis mediates recruitment of the lipid transfer protein CERT and the endoplasmic reticulum-resident protein VAPB to the inclusion membrane. Infect Immun 82:2037–2047. https://doi.org/10.1128/IAI.01530-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lutter EI, Barger AC, Nair V, Hackstadt T (2013) Chlamydia trachomatis inclusion membrane protein CT228 recruits elements of the myosin phosphatase pathway to regulate release mechanisms. Cell Rep 3:1921–1931. https://doi.org/10.1016/j.celrep.2013.04.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aeberhard L, Banhart S, Fischer M, Jehmlich N, Rose L, Koch S, Laue M, Renard BY, Schmidt F, Heuer D (2015) The proteome of the isolated Chlamydia trachomatis containing vacuole reveals a complex trafficking platform enriched for retromer components. PLoS Pathog 11:1–25. https://doi.org/10.1371/journal.ppat.1004883

    Article  CAS  Google Scholar 

  16. Kokes M, Dunn JD, Granek JA, Nguyen BD, Barker JR, Valdivia RH, Bastidas RJ (2015) Integrating chemical mutagenesis and whole-genome sequencing as a platform for forward and reverse genetic analysis of Chlamydia. Cell Host Microbe 17:716–725. https://doi.org/10.1016/j.chom.2015.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mirrashidi KM, Elwell CA, Verschueren E, Johnson JR, Frando A, Von Dollen J, Rosenberg O, Gulbahce N, Jang G, Johnson T, Jager S, Gopalakrishnan AM, Sherry J, Dan Dunn J, Olive A, Penn B, Shales M, Cox JS, Starnbach MN, Derre I, Valdivia R, Krogan NJ, Engel J (2015) Global mapping of the inc-human interactome reveals that retromer restricts chlamydia infection. Cell Host Microbe 18:109–121. https://doi.org/10.1016/j.chom.2015.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mital J, Lutter EI, Barger AC, Dooley CA, Hackstadt T (2015) Chlamydia trachomatis inclusion membrane protein CT850 interacts with the dynein light chain DYNLT1 (Tctex1). Biochem Biophys Res Commun 462:165–170. https://doi.org/10.1016/j.bbrc.2015.04.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Weber MM, Noriea NF, Bauler LD, Lam JL, Sager J, Wesolowski J, Paumet F, Hackstadt T (2016) A functional core of IncA is required for Chlamydia trachomatis inclusion fusion. J Bacteriol 198:1347–1355. https://doi.org/10.1128/JB.00933-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Elwell CA, Czudnochowski N, von Dollen J, Johnson JR, Nakagawa R, Mirrashidi K, Krogan NJ, Engel JN, Rosenberg OS (2017) Chlamydia interfere with an interaction between the mannose-6-phosphate receptor and sorting nexins to counteract host restriction. elife 6:1–17. https://doi.org/10.7554/eLife.22709

    Article  Google Scholar 

  21. Paul B, Kim HS, Kerr MC, Huston WM, Teasdale RD, Collins BM (2017) Structural basis for the hijacking of endosomal sorting nexin proteins by Chlamydia trachomatis. elife 6:1–23. https://doi.org/10.7554/eLife.22311

    Article  Google Scholar 

  22. Sixt BS, Bastidas RJ, Finethy R, Baxter RM, Carpenter VK, Kroemer G, Coers J, Valdivia RH (2017) The Chlamydia trachomatis inclusion membrane protein CpoS counteracts STING-mediated cellular surveillance and suicide programs. Cell Host Microbe 21:113–121. https://doi.org/10.1016/j.chom.2016.12.002

    Article  CAS  PubMed  Google Scholar 

  23. Weber MM, Lam JL, Dooley CA, Noriea NF, Hansen BT, Hoyt FH, Carmody AB, Sturdevant GL, Hackstadt T (2017) Absence of specific Chlamydia trachomatis inclusion membrane proteins triggers premature inclusion membrane Lysis and host cell death. Cell Rep 19:1406–1417. https://doi.org/10.1016/j.celrep.2017.04.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stanhope R, Flora E, Bayne C, Derré I (2017) IncV, a FFAT motif-containing Chlamydia protein, tethers the endoplasmic reticulum to the pathogen-containing vacuole. Proc Natl Acad Sci USA 114:12039–12044. https://doi.org/10.1073/pnas.1709060114

    Article  CAS  PubMed  Google Scholar 

  25. Nguyen PH, Lutter EI, Hackstadt T (2018) Chlamydia trachomatis inclusion membrane protein MrcA interacts with the inositol 1,4,5-trisphosphate receptor type 3 (ITPR3) to regulate extrusion formation. PLoS Pathog 14:e1006911. https://doi.org/10.1371/journal.ppat.1006911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mital J, Miller NJ, Fischer ER, Hackstadt T (2010) Specific chlamydial inclusion membrane proteins associate with active Src family kinases in microdomains that interact with the host microtubule network. Cell Microbiol 12:1235–1249. https://doi.org/10.1111/j.1462-5822.2010.01465.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gauliard E, Ouellette SP, Rueden KJ, Ladant D (2015) Characterization of interactions between inclusion membrane proteins from Chlamydia trachomatis. Front Cell Infect Microbiol 5:1–11. https://doi.org/10.3389/fcimb.2015.00013

    Article  CAS  Google Scholar 

  28. Ridderhof JC, Barnes RC (1989) Fusion of inclusions following superinfection of HeLa cells by two serovars of Chlamydia trachomatis. Infect Immun 57:3189–3193

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Han Y, Derré I (2017) A co-infection model system and the use of chimeric proteins to study Chlamydia inclusion proteins interaction. Front Cell Infect Microbiol 7:1–9. https://doi.org/10.3389/fcimb.2017.00079

    Article  CAS  Google Scholar 

  30. Wickstrum J, Sammons LR, Restivo KN, Hefty PS (2013) Conditional gene expression in Chlamydia trachomatis using the tet system. PLoS One 8:1–11. https://doi.org/10.1371/journal.pone.0076743

    Article  CAS  Google Scholar 

  31. Lowden NM, Yeruva L, Johnson CM, Bowlin AK, Fisher DJ (2015) Use of aminoglycoside 3′ adenyltransferase as a selection marker for Chlamydia trachomatis intron-mutagenesis and in vivo intron stability. BMC Res Notes 8:1–10. https://doi.org/10.1186/s13104-015-1542-9

    Article  CAS  Google Scholar 

  32. Nguyen BD, Valdivia RH (2012) Virulence determinants in the obligate intracellular pathogen Chlamydia trachomatis revealed by forward genetic approaches. Proc Natl Acad Sci USA 109:1263–1268. https://doi.org/10.1073/pnas.1117884109

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIAID grant R01AI101441 to ID. We thank Rebecca Stanhope, Maria Cortina, and Ralph Bishop for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Derré .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ende, R., Derré, I. (2019). A Coinfection Model to Evaluate Chlamydia Inc Protein Interactions. In: Brown, A. (eds) Chlamydia trachomatis. Methods in Molecular Biology, vol 2042. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9694-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9694-0_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9693-3

  • Online ISBN: 978-1-4939-9694-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics