Skip to main content

Analysis of Plasma, Serum, and Whole Blood Metabolites Using 1H NMR Spectroscopy

  • Protocol
  • First Online:
NMR-Based Metabolomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2037))

Abstract

Blood is the most widely used biological specimen in the metabolomics field. With its unique characteristics of high reproducibility and excellent quantitation, NMR spectroscopy offers immense benefits for the analysis of blood metabolites. In the metabolomics field, intact blood serum and plasma have been widely used for many years. However, such analysis has met with challenges arising from the deleterious effects of the abundant proteins in serum and plasma. Recent advances have led to the development of improved NMR methods that involve removal of protein before analysis. In particular, protein removal by precipitation using methanol alone or using a mixture of methanol and chloroform was shown to be an optimal method for metabolite recovery and for producing highly resolved NMR spectra. This has led to the absolute quantitation of nearly 70 metabolites in serum and plasma and nearly 80 in whole blood. In this chapter, we describe protocols for the analysis of blood serum, blood plasma, and whole blood metabolites using 1D 1H NMR spectroscopy methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Beckonert O, Keun HC, Ebbels TM, Bundy J, Holmes E, Lindon JC et al (2007) Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2(11):2692–2703

    Article  CAS  Google Scholar 

  2. Psychogios N, Hau DD, Peng J, Guo AC, Mandal R, Bouatra S et al (2011) The human serum metabolome. PLoS One 6(2):e16957. https://doi.org/10.1371/journal.pone.0016957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nagana Gowda GA, Raftery D (2013) Biomarker discovery and translation in metabolomics. Curr Metabolomics 1(3):227–240

    Article  CAS  Google Scholar 

  4. Nicholson JK, Gartland KP (1989) 1H NMR studies on protein binding of histidine, tyrosine and phenylalanine in blood plasma. NMR Biomed 2(2):77–82

    Article  CAS  Google Scholar 

  5. Chatham JC, Forder JR (1999) Lactic acid and protein interactions: implications for the NMR visibility of lactate in biological systems. Biochim Biophys Acta 1426(1):177–184

    Article  CAS  Google Scholar 

  6. Bell JD, Brown JC, Kubal G, Sadler PJ (1988) NMR-invisible lactate in blood plasma. FEBS Lett 235:81–86

    Article  CAS  Google Scholar 

  7. Nagana Gowda GA, Raftery D (2014) Quantitating metabolites in protein precipitated serum using NMR spectroscopy. Anal Chem 86(11):5433–5440

    Article  CAS  Google Scholar 

  8. Nagana Gowda GA, Gowda YN, Raftery D (2015) Expanding the limits of blood metabolite quantitation using NMR spectroscopy. Anal Chem 87(1):706–715

    Article  CAS  Google Scholar 

  9. Wevers RA, Engelke U, Heerschap A (1994) High-resolution 1H-NMR spectroscopy of blood plasma for metabolic studies. Clin Chem 40(7 Pt 1):1245–1250

    CAS  PubMed  Google Scholar 

  10. Daykin CA, Foxall PJ, Connor SC, Lindon JC, Nicholson JK (2002) The comparison of plasma deproteinization methods for the detection of low-molecular-weight metabolites by (1)H nuclear magnetic resonance spectroscopy. Anal Biochem 304(2):220–230

    Article  CAS  Google Scholar 

  11. Tiziani S, Emwas AH, Lodi A, Ludwig C, Bunce CM, Viant MR, Günther UL (2008) Optimized metabolite extraction from blood serum for 1H nuclear magnetic resonance spectroscopy. Anal Biochem 377(1):16–23

    Article  CAS  Google Scholar 

  12. Fan TW (2012) In: Fan TW, Higashi RM, Lane AN (eds) The handbook of metabolomics, Methods in pharmacology and toxicology. Springer, New York, pp 7–27

    Chapter  Google Scholar 

  13. Bouatra S, Aziat F, Mandal R, Guo AC, Wilson MR, Knox C et al (2013) The human urine metabolome. PLoS One 8(9):e73076. https://doi.org/10.1371/journal.pone.0073076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chaleckis R, Murakami I, Takada J, Kondoh H, Yanagida M (2016) Individual variability in human blood metabolites identifies age-related differences. Proc Natl Acad Sci U S A 113(16):4252–4259

    Article  CAS  Google Scholar 

  15. Stringer KA, Younger JG, McHugh C, Yeomans L, Finkel MA, Puskarich MA et al (2015) Whole blood reveals more metabolic detail of the human metabolome than serum as measured by 1H-NMR spectroscopy: implications for sepsis metabolomics. Shock 44(3):200–208

    Article  CAS  Google Scholar 

  16. Chaleckis R, Ebe M, Pluskal T, Murakami I, Kondoh H, Yanagida M (2014) Unexpected similarities between the Schizosaccharomyces and human blood metabolomes, and novel human metabolites. Mol BioSyst 10(10):2538–2551

    Article  CAS  Google Scholar 

  17. Catalán Ú, Rodríguez MÁ, Ras MR, Maciá A, Mallol R, Vinaixa M et al (2013) Biomarkers of food intake and metabolite differences between plasma and red blood cell matrices; a human metabolomic profile approach.Solà, R. Mol BioSyst 9(6):1411–1422

    Article  Google Scholar 

  18. Nagana Gowda GA, Raftery D (2017) Whole blood metabolomics by 1H NMR spectroscopy provides a new opportunity to evaluate coenzymes and antioxidants. Anal Chem 89(8):4620–4627

    Article  CAS  Google Scholar 

  19. Gorman MW, Feigl EO, Buffington CW (2007) Human plasma ATP concentration. Clin Chem 53(2):318–325

    Article  CAS  Google Scholar 

  20. Djukovic D, Nagana Gowda GA, Raftery D (2013) Mass spectrometry and NMR spectroscopy-based quantitative metabolomics. In: Issaq HJ, Veenstra TD (eds) Proteomic and metabolomic approaches to biomarker discovery. Elsevier, New York, pp 279–297

    Chapter  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the NIH (National Institute of General Medical Sciences 2R01GM085291).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Raftery .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nagana Gowda, G.A., Raftery, D. (2019). Analysis of Plasma, Serum, and Whole Blood Metabolites Using 1H NMR Spectroscopy. In: Gowda, G., Raftery, D. (eds) NMR-Based Metabolomics. Methods in Molecular Biology, vol 2037. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9690-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9690-2_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9689-6

  • Online ISBN: 978-1-4939-9690-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics