Skip to main content

In Vitro Cytogenetic Assays: Chromosomal Aberrations and Micronucleus Tests

  • Protocol
  • First Online:
Genotoxicity Assessment

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2031))

Abstract

Chromosome damage is a very important indicator of genetic damage relevant to environmental and clinical studies. Detailed descriptions of the protocols used for detection of chromosomal aberrations induced by genotoxic agents in vitro both in the presence or absence of rat liver-derived metabolizing systems are given in this chapter. Structural chromosomal aberrations that can be observed and quantified at metaphases are described here. For the detection of chromosomal damage (fragments or whole chromosome) in interphase, the micronucleus test can be used, and a description of this test is also presented. Criteria for determining a positive result using appropriate statistical methods are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Erickson RP (2010) Somatic gene mutation and human disease other than cancer: an update. Mutat Res 705:96–106

    Article  CAS  Google Scholar 

  2. De Flora S, Izzotti A (2007) Mutagenesis and cardiovascular diseases; molecular mechanisms, risk factors, and protective factors. Mutat Res 621:5–17

    Article  Google Scholar 

  3. Hoeijmakers JH (2009) DNA damage, aging, and cancer. New Engl J Med 361:1475–1485

    Article  CAS  Google Scholar 

  4. Frank SA (2010) Evolution in health and medicine Sackler colloquium: Somatic evolutionary genomics: mutations during development cause highly variable genetic mosaicism with risk of cancer and neurodegeneration. Proc Natl Acad Sci U S A 107:1725–1730

    Article  CAS  Google Scholar 

  5. Slatter MA, Gennery AR (2010) Primary immunodeficiencies associated with DNA-repair disorders. Expert Rev Mol Med 685:146–165

    CAS  Google Scholar 

  6. Bender MA, Griggs HG, Bedford JS (1974) Mechanisms of chromosomal aberration production. III. Chemicals and ionising radiation. Mutat Res 23:197–212

    Article  CAS  Google Scholar 

  7. Evans HJ (1961) Chromatid aberrations induced by gamma irradiation. I. The structure and frequency of chromatid interchanges in diploid and tetraploid cells of Vicia faba. Genetics 46:257–275

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Evans HJ, Scott D (1969) The induction of chromosome aberrations by nitrogen mustard and its dependence on DNA synthesis. Proc R Soc Lond B Biol Sci 173:491–512

    Article  CAS  Google Scholar 

  9. Kihlman BA (1977) 1,3,7,9-tetramethyluric acid, a chromosome-damaging agent occurring as a natural metabolite in certain caffeine-producing plants. Mutat Res 39:297–315

    Article  CAS  Google Scholar 

  10. Obe G, Pfeiffer P, Savage JRK et al (2002) Chromosomal aberrations: formation, identification, and distribution. Mutat Res 504:3–16

    Article  Google Scholar 

  11. Cornforth MN (2006) Perspectives on the formation of radiation-induced exchange aberrations. DNA Repair 5:1182–1191

    Article  CAS  Google Scholar 

  12. Jakob B, Splinter J, Durante M et al (2009) Live cell microscopy analysis of radiation-induced DNA double-strand break motion. Proc Natl Acad Sci U S A 106:3172–3177

    Article  CAS  Google Scholar 

  13. Nagasawa H, Brogan JR, Peng Y et al (2010) Some unresolved problems and unresolved issues in radiation cytogenetics: a review and new data on roles of homologous recombination and non-homologous end joining. Mutat Res 701:12–22

    Article  CAS  Google Scholar 

  14. Ensminger M, Iloff L, Ebel C et al (2014) DNA breaks and chromosomal aberrations arise when replication meets base excision repair. J Cell Biol 206:29–43

    Article  CAS  Google Scholar 

  15. Savage JRK (1975) Classification and relationships of induced chromosomal structural changes. J Med Genet 13:103–122

    Article  Google Scholar 

  16. Pincu M, Bass D, Norman A (1984) An improved micronuclear assay in lymphocytes. Mutat Res 139:61–65

    Article  CAS  Google Scholar 

  17. Fenech M, Morley AA (1985) Measurement of micronuclei in lymphocytes. Mutat Res 147:29–36

    Article  CAS  Google Scholar 

  18. Degrassi F, Tanzarella C (1988) Immunofluorescent staining of kinetochores in micronuclei: a new assay for the detection of aneuploidy. Mutat Res 203:339–345

    Article  CAS  Google Scholar 

  19. Thomson EJ, Perry PE (1988) The identification of micronucleated chromosomes: a possible assay for aneuploidy. Mutagenesis 3:415–418

    Article  CAS  Google Scholar 

  20. Eastmond DA, Tucker JD (1989) Identification of aneuploidy-inducing agents using cytokinesis-blocked human lymphocytes and an anti-kinetochore antibody. Environ Mol Mutagen 13:34–43

    Article  CAS  Google Scholar 

  21. Eastmond DA, Pinkel D (1990) Detection of aneuploidy-inducing agents in human lymphocytes using fluorescence in situ hybridization with chromosome specific DNA probes. Mutat Res 234:303–318

    Article  CAS  Google Scholar 

  22. Marshall RR, Murphy M, Kirkland DJ et al (1996) Fluorescence in situ hybridisation (FISH) with chromosome-specific centromeric probes: a sensitive method to detect aneuploidy. Mutat Res 372:233–245

    Article  CAS  Google Scholar 

  23. Natarajan AT, Tates AD, van Buul PPV et al (1976) Cytogenetic effects of mutagens/carcinogens after activation in a microsomal system in vitro. Mutat Res 37:83–90

    Article  CAS  Google Scholar 

  24. Kao FT, Puck TT (1968) Genetics of somatic mammalian cells, VII. Induction and isolation of nutritional mutants in Chinese hamster cells. Proc Natl Acad Sci U S A 60:1275–1281

    Article  CAS  Google Scholar 

  25. Ford DK, Yerganian G (1958) Observations on the chromosomes of Chinese hamster cells in tissue culture. J Natl Cancer Inst 21:393–425

    CAS  PubMed  Google Scholar 

  26. Koyama H, Utakoji T, Ono T (1970) A new cell line derived from newborn Chinese hamster lung tissue. Gann 61:161–167

    CAS  PubMed  Google Scholar 

  27. Xiao Y, Natarajan AT (1998) Development of arm-specific and subtelomeric region-specific painting probes for Chinese hamster chromosomes and their utility in chromosome identification of Chinese hamster cell lines. Cytogenet Cell Genet 83:8–13

    Article  Google Scholar 

  28. Matsushima T, Sawamura M, Hara K et al (1976) A safe substitute for polychlorinated biphenyls as an inducer of metabolic activation system. In: De Serres FJ, Fouts JR, Bend JR, Philpot RM (eds) In vitro metabolic activation in mutagenesis testing. Elsevier/North-Holland, Amsterdam, pp 85–88

    Google Scholar 

  29. Elliot BM, Combes RD, Elcombe CR et al (1992) Report of the UK environmental mutagen society working party. Alternatives to Aroclor 1254-induced S9 in in vitro genotoxicity assays. Mutagenesis 7:175–177

    Article  Google Scholar 

  30. Halliwell B (2003) Oxidative stress in cell culture: an under-appreciated problem? FEBS Lett 540:3–6

    Article  CAS  Google Scholar 

  31. Wee LM, Long LH, Whiteman M et al (2003) Factors affecting the ascorbate- and phenolic-dependent generation of hydrogen peroxide in Dulbecco’s modified Eagles medium. Free Radic Res 37:1123–1130

    Article  CAS  Google Scholar 

  32. Long LH, Kirkland D, Whitwell J et al (2007) Different cytotoxic and clastogenic effects of epigallocatechin gallate in various cell-culture media due to variable rates of its oxidation in the culture medium. Mutat Res 634:177–183

    Article  CAS  Google Scholar 

  33. Santoro A, Lioi MB, Monfregola J et al (2005) l-Carnitine protects mammalian cells from chromosome aberrations but not from inhibition of cell proliferation induced by hydrogen peroxide. Mutat Res 587:16–25

    Article  Google Scholar 

  34. Morita T, Honma M, Morikawa K (2012) Effect of reducing the top concentration used in the in vitro chromosomal aberration test in CHL cells on the evaluation of industrial chemical genotoxicity. Mutat Res 741:32–56

    Article  CAS  Google Scholar 

  35. Brookmire L, Chen JJ, Levy DD (2013) Evaluation of the highest concentrations used in the in vitro chromosome aberrations assay. Environ Mol Mutagen 54:36–43

    Article  CAS  Google Scholar 

  36. Brusick D (1987) Genotoxicity produced in cultured mammalian cell assays by treatment conditions. Mutat Res 189:1–80

    Article  CAS  Google Scholar 

  37. Scott D, Galloway SM, Marshall RR et al (1991) International commission for protection against environmental mutagens and carcinogens. Genotoxicity under extreme culture conditions: A report from ICPEMC Task Group 9. Mutat Res 257:147–205

    Article  CAS  Google Scholar 

  38. Seeberg AH, Mosesso P, Forster R (1988) High-dose-level effects in mutagenicity assays utilizing mammalian cells in culture. Mutagenesis 3:213–218

    Article  CAS  Google Scholar 

  39. Kirkland D, Pfuhler S, Tweats D et al (2007) How to reduce false positive results when undertaking in vitro genotoxicity testing and thus avoid unnecessary follow-up animal tests: Report of an ECVAM Workshop. Mutat Res 628:31–55

    Article  CAS  Google Scholar 

  40. Galloway SM, Lorge E, Aardema MJ et al (2011) Workshop summary: Top concentration for in vitro mammalian cell genotoxicity assays; and report from working group on toxicity measures and top concentration for in vitro cytogenetics assays (chromosome aberrations and micronucleus). Mutat Res 723:77–83

    Article  CAS  Google Scholar 

  41. Hayashi M, Dearfield K, Kasper P et al (2011) Compilation and use of genetic toxicity historical control data. Mutat Res 723:87–90

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale Mosesso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mosesso, P., Cinelli, S. (2019). In Vitro Cytogenetic Assays: Chromosomal Aberrations and Micronucleus Tests. In: Dhawan, A., Bajpayee, M. (eds) Genotoxicity Assessment. Methods in Molecular Biology, vol 2031. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9646-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9646-9_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9645-2

  • Online ISBN: 978-1-4939-9646-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics