Skip to main content

Identification and Functional Analysis of NB-LRR-Type Virus Resistance Genes: Overview and Functional Analysis of Candidate Genes

  • Protocol
  • First Online:
Antiviral Resistance in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2028))

Abstract

Coexpression of a plant NB-LRR-type resistance (R) gene and corresponding viral avirulent (Avr) gene introduced in Nicotiana benthamiana using Agrobacterium tumefaciens confers hypersensitive response (HR). Such Agrobacterium-mediated transient gene expression methods have contributed to the identification of new plant R genes and facilitated the analysis of their functions. Here we describe a model method, by which several tobamovirus R genes from Solanaceous plants have been successfully identified and characterized molecularly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  Google Scholar 

  2. Cook DE, Mesarich CH, Thomma BP (2015) Understanding plant immunity as a surveillance system to detect invasion. Annu Rev Phytopathol 53:541–563

    Article  CAS  Google Scholar 

  3. Heath MC (2000) Hypersensitive response-related death. Plant Mol Biol 44:321–334

    Article  CAS  Google Scholar 

  4. Collier SM, Moffett P (2009) NB-LRRs work a “bait and switch” on pathogens. Trends Plant Sci 14:521–529

    Article  CAS  Google Scholar 

  5. Whitham S, Dinesh-Kumar SP, Choi D, Hehl R, Corr C, Baker B (1994) The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78:1101–1115

    Article  CAS  Google Scholar 

  6. de Ronde D, Butterbach P, Kormelink R (2014) Dominant resistance against plant viruses. Front Plant Sci 5:307

    Article  Google Scholar 

  7. Takken FL, Tameling WI (2009) To nibble at plant resistance proteins. Science 324:744–746

    Article  CAS  Google Scholar 

  8. Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15:809–834

    Article  CAS  Google Scholar 

  9. Zhou T, Wang Y, Chen JQ, Araki H, Jing Z, Jiang K, Shen J, Tian D (2004) Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol Gen Genomics 271:402–415

    Article  CAS  Google Scholar 

  10. Kohler A, Rinaldi C, Duplessis S, Baucher M, Geelen D, Duchaussoy F, Meyers BC, Boerjan W, Martin F (2008) Genome-wide identification of NBS resistance genes in Populus trichocarpa. Plant Mol Biol 66:619–636

    Article  CAS  Google Scholar 

  11. Jupe F, Pritchard L, Etherington GJ, Mackenzie K, Cock PJ, Wright F, Sharma SK, Bolser D, Bryan GJ, Jones JD, Hein I (2012) Identification and localisation of the NB-LRR gene family within the potato genome. BMC Genomics 13:75

    Article  CAS  Google Scholar 

  12. Whitham S, McCormick S, Baker B (1996) The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato. Proc Natl Acad Sci U S A 93:8776–8781

    Article  CAS  Google Scholar 

  13. Takahashi H, Miller J, Nozaki Y, Takeda M, Shah J, Hase S, Ikegami M, Ehara Y, Dinesh-Kumar SP (2002) RCY1, an Arabidopsis thaliana RPP8/HRT family resistance gene, conferring resistance to cucumber mosaic virus requires salicylic acid, ethylene and a novel signal transduction mechanism. Plant J 32:655–667

    Article  CAS  Google Scholar 

  14. Sekine KT, Kawakami S, Hase S, Kubota M, Ichinose Y, Shah J, Kang HG, Klessig DF, Takahashi H (2008) High level expression of a virus resistance gene, RCY1, confers extreme resistance to Cucumber mosaic virus in Arabidopsis thaliana. Mol Plant-Microbe Interact 21:1398–1407

    Article  CAS  Google Scholar 

  15. Bendahmane A, Querci M, Kanyuka K, Baulcombe DC (2000) Agrobacterium transient expression system as a tool for the isolation of disease resistance genes: application to the Rx2 locus in potato. Plant J 21:73–81

    Article  CAS  Google Scholar 

  16. Mestre P, Baulcombe DC (2006) Elicitor-mediated oligomerization of the tobacco N disease resistance protein. Plant Cell 18:491–501

    Article  CAS  Google Scholar 

  17. Rairdan GJ, Moffett P (2006) Distinct domains in the ARC region of the potato resistance protein Rx mediate LRR binding and inhibition of activation. Plant Cell 18:2082–2093

    Article  CAS  Google Scholar 

  18. Sacco MA, Mansoor S, Moffett P (2007) A RanGAP protein physically interacts with the NB-LRR protein Rx, and is required for Rx-mediated viral resistance. Plant J 52:82–93

    Article  CAS  Google Scholar 

  19. Tomita R, Sekine KT, Mizumoto H, Sakamoto M, Murai J, Kiba A, Hikichi Y, Suzuki K, Kobayashi K (2011) Genetic basis for the hierarchical interaction between Tobamovirus spp. and L resistance gene alleles from different pepper species. Mol Plant-Microbe Interact 24:108–117

    Article  CAS  Google Scholar 

  20. Sekine KT, Tomita R, Takeuchi S, Atsumi G, Saitoh H, Mizumoto H, Kiba A, Yamaoka N, Nishiguchi M, Hikichi Y, Kobayashi K (2012) Functional differentiation in the Leucine-rich repeat domains of closely related plant virus-resistance that recognize common Avr proteins. Mol Plant-Microbe Interact 25:1219–1229

    Article  CAS  Google Scholar 

  21. Hamel LP, Sekine KT, Wallon T, Sugiwaka Y, Kobayashi K, Moffett P (2016) The chloroplastic protein THF1 interacts with the coiled-coil domain of the disease resistance protein N′ and regulates light-dependent cell death. Plant Physiol 171:658–674

    Article  CAS  Google Scholar 

  22. Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42:819–832

    Article  CAS  Google Scholar 

  23. Takahashi H, Shoji H, Ando S, Kanayama Y, Kusano T, Takeshita M, Suzuki M, Masuta C (2012) RCY1-mediated resistance to Cucumber mosaic virus is regulated by LRR domain-mediated interaction with CMV(Y) following degradation of RCY1. Mol Plant-Microbe Interact 25:1171–1185

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by JSPS KAKENHI grant numbers 24780043 and 17K15230.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-Taro Sekine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tomita, R., Sekine, KT., Tateda, C., Kobayashi, K. (2019). Identification and Functional Analysis of NB-LRR-Type Virus Resistance Genes: Overview and Functional Analysis of Candidate Genes. In: Kobayashi, K., Nishiguchi, M. (eds) Antiviral Resistance in Plants. Methods in Molecular Biology, vol 2028. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9635-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9635-3_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9634-6

  • Online ISBN: 978-1-4939-9635-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics