Skip to main content

Analysis of Physcomitrella Phytochrome Mutants via Phototropism and Polarotropism

  • Protocol
  • First Online:
Phytochromes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2026))

Abstract

In mosses such as Physcomitrella patens phytochrome photoreceptors steer directional/vectorial responses to unilateral/polarized light. In this chapter, we describe procedures to assay phototropism and polarotropism quantitatively in wild type and mutant lines. Protonemata are placed on agar-based medium in square Petri dishes in darkness for 1 week, allowing caulonemata to develop and grow negatively gravitropically. For phototropism, the dishes are placed vertically in black boxes and unilaterally irradiated with continuous red light. For polarotropism, Petri dishes are placed horizontally and irradiated with linearly polarized red light from above. After irradiation, the filaments are photographed using a macroscope with CCD camera and the bending angles measured using image processing software. The data are transfered to a spreadsheet program, placed into 10° bending angle classes and illustrated using a circular histogram.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li F-W, Melkonian M, Rothfels CJ, Villarreal JC, Stevenson DW, Graham SW, Wong GK-S, Pryer KM, Mathews S (2015) Phytochrome diversity in green plants and the origin of canonical plant phytochromes. Nat Commun 6:7852

    Article  CAS  Google Scholar 

  2. Flint LH, McAlister ED (1935) Wave lengths of radiation in the visible spectrum inhibiting the germination of light-sensitive lettuce seed. Smiths Misc Coll 94:1–11

    Google Scholar 

  3. Borthwick HA, Hendricks SB, Parker MW, Toole EH, Toole VK (1952) A reversible photoreaction controlling seed germination. Proc Natl Acad Sci U S A 38:662–666

    Article  CAS  Google Scholar 

  4. Nagatani A, Kay SA, Deak M, Chua NH, Furuya M (1991) Rice type I phytochrome regulates hypocotyl elongation in transgenic tobacco seedlings. Proc Natl Acad Sci U S A 88:5207–5211

    Article  CAS  Google Scholar 

  5. Chen M, Chory J (2011) Phytochrome signaling mechanisms and the control of plant development. Trends Cell Biol 21:664–671

    Article  CAS  Google Scholar 

  6. Godnev TN, Akulovich NK, Orlovskaia KI, Domash VI (1966) The influence of the phytochrome system on the formation of pigments in carrot tissue culture. Dokl Akad Nauk SSSR 169:692–694

    CAS  PubMed  Google Scholar 

  7. Somers DE, Devlin PF, Kay SA (1998) Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science 282:1488–1490

    Article  CAS  Google Scholar 

  8. Searle I, Coupland G (2004) Induction of flowering by seasonal changes in photoperiod. EMBO J 23:1217–1222

    Article  CAS  Google Scholar 

  9. Sakamoto K, Nagatani A (1996) Nuclear localization activity of phytochrome B. Plant J 10:859–868

    Article  CAS  Google Scholar 

  10. Kircher S, Kozma-Bognar L, Kim L, Adam E, Harter K, Schäfer E, Nagy F (1999) Light quality-dependent nuclear import of the plant photoreceptors phytochrome A and B. Plant Cell 11:1445–1456

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Nagy F, Kircher S, Schäfer E (2000) Nucleo-cytoplasmic partitioning of the plant photoreceptors phytochromes. Semin Cell Dev Biol 11:505–510

    Article  CAS  Google Scholar 

  12. Kircher S, Gil P, Kozma-Bognár L, Fejes E, Speth V, Husselstein-Müller T, Bauer D, Ádám É, Schäfer E, Nagy F (2002) Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome A, B, C, D, and E is regulated differentially by light and exhibits a diurnal rhythm. Plant Cell 14:1541–1555

    Article  CAS  Google Scholar 

  13. Ma L, Li J, Qu L, Hager J, Chen Z, Zhao H, Deng XW (2001) Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell 13:2589–2607

    Article  CAS  Google Scholar 

  14. Hiltbrunner A, Viczián A, Bury E, Tscheuschler A, Kircher S, Tóth R, Honsberger A, Nagy F, Fankhauser C, Schäfer E (2005) Nuclear accumulation of the phytochrome A photoreceptor requires FHY1. Curr Biol 15:2125–2130

    Article  CAS  Google Scholar 

  15. Quail PH (2010) Phytochromes. Curr Biol 20:R504–R507

    Article  CAS  Google Scholar 

  16. Tepperman JM, Zhu T, Chang HS, Wang X, Quail PH (2001) Multiple transcription-factor genes are early targets of phytochrome A signaling. Proc Natl Acad Sci U S A 98:9437–9442

    Article  CAS  Google Scholar 

  17. Tepperman JM, Hwang Y-S, Quail PH (2006) phyA dominates in transduction of red-light signals to rapidly responding genes at the initiation of Arabidopsis seedling de-etiolation. Plant J 48:728–742

    Article  CAS  Google Scholar 

  18. Monte E, Tepperman JM, Al-Sady B, Kaczorowski KA, Alonso JM, Ecker JR, Li X, Zhang Y, Quail PH (2004) The phytochrome-interacting transcription factor, PIF3, acts early, selectively, and positively in light-induced chloroplast development. Proc Natl Acad Sci U S A 101:16091–16098

    Article  CAS  Google Scholar 

  19. Osterlund MT, Hardtke CS, Wei N, Deng XW (2000) Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405:462–466

    Article  CAS  Google Scholar 

  20. Endo M, Tanigawa Y, Murakami T, Araki T, Nagatani A (2013) PHYTOCHROME-DEPENDENT LATE-FLOWERING accelerates flowering through physical interactions with phytochrome B and CONSTANS. Proc Natl Acad Sci U S A 110:18017–18022

    Article  CAS  Google Scholar 

  21. Jenkins GI, Cove DJ (1983) Phototropism and polarotropism of primary chloronemata of the moss Physcomitrella patens: responses of the wild-type. Planta 158:357–364

    Article  CAS  Google Scholar 

  22. Cove DJ, Schild A, Ashton NW, Hartmann E (1978) Genetic and physiological studies of the effect of light on the development of the moss, Physcomitrella patens. Photochem Photobiol 27:249–254

    Article  Google Scholar 

  23. Cove D, Knight C (1987) Gravitropism and phototropism in the moss, Physcomitrella patens. Cambridge University Press, London

    Google Scholar 

  24. Hughes J (2013) Phytochrome cytoplasmic signaling. Annu Rev Plant Biol 64:377–402

    Article  CAS  Google Scholar 

  25. Mittmann F, Brücker G, Zeidler M, Repp A, Abts T, Hartmann E, Hughes J (2004) Targeted knockout in Physcomitrella reveals direct actions of phytochrome in the cytoplasm. Proc Natl Acad Sci U S A 101:13939–13944

    Article  CAS  Google Scholar 

  26. Jaedicke K, Lichtenthäler AL, Meyberg R, Zeidler M, Hughes J (2012) A phytochrome-phototropin light signaling complex at the plasma membrane. Proc Natl Acad Sci U S A 109:12231–12236

    Article  CAS  Google Scholar 

  27. Jenkins GI, Cove DJ (1983) Phototropism and polarotropism of primary chloronemata of the moss Physcomitrella patens: responses of mutant strains. Planta 159:432–438

    Article  CAS  Google Scholar 

  28. Kasahara M, Kagawa T, Sato Y, Kiyosue T, Wada M (2004) Phototropins mediate blue and red light-induced chloroplast movements in Physcomitrella patens. Plant Physiol 135:1388–1397

    Article  CAS  Google Scholar 

  29. Ermert AL, Mailliet K, Hughes J (2016) Holophytochrome-interacting proteins in Physcomitrella: Putative actors in phytochrome cytoplasmic signaling. Front Plant Sci 7:613

    Article  Google Scholar 

  30. Meske V, Ruppert V, Hartmann E (1996) Structural basis for the red light induced repolarization of tip growth in caulonema cells of Ceratodon purpureus. Protoplasma 192:189–198

    Article  Google Scholar 

  31. Meske V, Hartmann E (1995) Reorganization of microfilaments in protonemal tip cells of the moss Ceratodon purpureus during the phototropic response. Protoplasma 188:59–69

    Article  CAS  Google Scholar 

  32. Ashton NW, Cove DJ (1977) The isolation and preliminary characterisation of auxotrophic and analogue resistant mutants of the moss, Physcomitrella patens. Mol Gen Genet 154:87–95

    Article  Google Scholar 

  33. Lamparter T, Esch H, Cove D, Hughes J, Hartmann E (1996) Aphototropic mutants of the moss Ceratodon purpureus with spectrally normal and with spectrally dysfunctional phytochrome. Plant Cell Environ 19:560–568

    Article  Google Scholar 

  34. Zeidler M (2016) Physiological analysis of phototropic responses in Arabidopsis. Methods Mol Biol 1398:21–28

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by DFG grant Hu702/5 to JH. We thank Mathias Zeidler for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon Hughes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ermert, A.L., Stahl, F., Gans, T., Hughes, J. (2019). Analysis of Physcomitrella Phytochrome Mutants via Phototropism and Polarotropism. In: Hiltbrunner, A. (eds) Phytochromes. Methods in Molecular Biology, vol 2026. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9612-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9612-4_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9611-7

  • Online ISBN: 978-1-4939-9612-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics