Skip to main content

Modeling Biological Complexes Using Integrative Modeling Platform

  • Protocol
  • First Online:
Biomolecular Simulations

Abstract

Integrative structure modeling provides 3D models of macromolecular systems that are based on information from multiple types of experiments, physical principles, statistical inferences, and prior structural models. Here, we provide a hands-on realistic example of integrative structure modeling of the quaternary structure of the actin, tropomyosin, and gelsolin protein assembly based on electron microscopy, solution X-ray scattering, and chemical crosslinking data for the complex as well as excluded volume, sequence connectivity, and rigid atomic X-ray structures of the individual subunits. We follow the general four-stage process for integrative modeling, including gathering the input information, converting the input information into a representation of the system and a scoring function, sampling alternative model configurations guided by the scoring function, and analyzing the results. The computational aspects of this approach are implemented in our open-source Integrative Modeling Platform (IMP), a comprehensive and extensible software package for integrative modeling (https://integrativemodeling.org). In particular, we rely on the Python Modeling Interface (PMI) module of IMP that provides facile mixing and matching of macromolecular representations, restraints based on different types of information, sampling algorithms, and analysis including validations of the input data and output models. Finally, we also outline how to deposit an integrative structure and corresponding experimental data into PDB-Dev, the nascent worldwide Protein Data Bank (wwPDB) resource for archiving and disseminating integrative structures (https://pdb-dev.wwpdb.org). The example application provides a starting point for a user interested in using IMP for integrative modeling of other biomolecular systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mitra K, Frank J (2006) RIBOSOME DYNAMICS: insights from atomic structure modeling into cryo-electron microscopy maps. Annu Rev Biophys Biomol Struct 35:299–317. https://doi.org/10.1146/annurev.biophys.35.040405.101950

    Article  CAS  PubMed  Google Scholar 

  2. Robinson CV, Sali A, Baumeister W (2007) The molecular sociology of the cell. Nature 450:973–982

    Article  CAS  PubMed  Google Scholar 

  3. Sali A, Glaeser R, Earnest T, Baumeister W (2003) From words to literature in structural proteomics. Nature 422:216–225

    Article  CAS  PubMed  Google Scholar 

  4. Schmeing TM, Ramakrishnan V (2009) What recent ribosome structures have revealed about the mechanism of translation. Nature 461:1234–1242. https://doi.org/10.1038/nature08403

    Article  CAS  PubMed  Google Scholar 

  5. Blundell TL, Johnson LN (1976) Protein crystallography. Academic Press, New York

    Google Scholar 

  6. Chiu W, Baker ML, Jiang W et al (2005) Electron cryomicroscopy of biological machines at subnanometer resolution. Structure 13:363–372. https://doi.org/10.1016/j.str.2004.12.016

    Article  CAS  PubMed  Google Scholar 

  7. Lučić V, Leis A, Baumeister W (2008) Cryo-electron tomography of cells: connecting structure and function. Histochem Cell Biol 130:185–196. https://doi.org/10.1007/s00418-008-0459-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stahlberg H, Walz T (2008) Molecular electron microscopy: state of the art and current challenges. ACS Chem Biol 3:268–281. https://doi.org/10.1021/cb800037d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Parrish JR, Gulyas KD, Finley RL (2006) Yeast two-hybrid contributions to interactome mapping. Curr Opin Biotechnol 17:387–393. https://doi.org/10.1016/j.copbio.2006.06.006

    Article  CAS  PubMed  Google Scholar 

  10. Fernandez-Martinez J, Phillips J, Sekedat MD et al (2012) Structure–function mapping of a heptameric module in the nuclear pore complex. J Cell Biol 196:419–434. https://doi.org/10.1083/jcb.201109008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gingras A-C, Gstaiger M, Raught B, Aebersold R (2007) Analysis of protein complexes using mass spectrometry. Nat Rev Mol Cell Biol 8:645–654. https://doi.org/10.1038/nrm2208

    Article  CAS  PubMed  Google Scholar 

  12. Ward AB, Sali A, Wilson IA (2013) Integrative structural biology. Science 339:913–915. https://doi.org/10.1126/science.1228565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lasker K, Förster F, Bohn S et al (2012) Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proc Natl Acad Sci U S A 109:1380–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Simon B, Madl T, Mackereth CD et al (2010) An efficient protocol for NMR-spectroscopy-based structure determination of protein complexes in solution. Angew Chem Int Ed Engl 49:1967–1970. https://doi.org/10.1002/anie.200906147

    Article  CAS  PubMed  Google Scholar 

  15. Baù D, Sanyal A, Lajoie BR et al (2011) The three-dimensional folding of the α-globin gene domain reveals formation of chromatin globules. Nat Struct Mol Biol 18:107–114. https://doi.org/10.1038/nsmb.1936

    Article  CAS  PubMed  Google Scholar 

  16. Viswanath S, Bonomi M, Kim SJ et al (2017) The molecular architecture of the yeast spindle pole body core determined by Bayesian integrative modeling. Mol Biol Cell 28:3298–3314. https://doi.org/10.1091/mbc.E17-06-0397

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kim SJ, Fernandez-Martinez J, Nudelman I et al (2018) Integrative structure and functional anatomy of a nuclear pore complex. Nature 555:475–482. https://doi.org/10.1038/nature26003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Molnar K, Bonomi M, Pellarin R et al (2014) Cys-scanning disulfide crosslinking and Bayesian modeling probe the transmembrane signaling mechanism of the histidine kinase, PhoQ. Structure 22:1239–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Webb B, Viswanath S, Bonomi M et al (2018) Integrative structure modeling with the integrative modeling platform: integrative structure modeling with IMP. Protein Sci 27:245–258. https://doi.org/10.1002/pro.3311

    Article  CAS  PubMed  Google Scholar 

  20. Shen M, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci 15:2507–2524. https://doi.org/10.1110/ps.062416606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sippl MJ (1990) Calculation of conformational ensembles from potentials of mena force. J Mol Biol 213:859–883. https://doi.org/10.1016/S0022-2836(05)80269-4

    Article  CAS  PubMed  Google Scholar 

  22. Brooks BR, Brooks CL, Mackerell AD et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614. https://doi.org/10.1002/jcc.21287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Weiner SJ, Kollman PA, Case DA et al (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc 106:765–784. https://doi.org/10.1021/ja00315a051

    Article  CAS  Google Scholar 

  24. Šali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815. https://doi.org/10.1006/jmbi.1993.1626

    Article  PubMed  Google Scholar 

  25. Kelley LA, Mezulis S, Yates CM et al (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858. https://doi.org/10.1038/nprot.2015.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hanot S, Bonomi M, Greenberg CH et al (2018) Bayesian multi-scale modeling of macromolecular structures based on cryo-electron microscopy density maps. https://doi.org/10.1101/113951

  27. Kawabata T (2008) Multiple subunit fitting into a low-resolution density map of a macromolecular complex using a Gaussian mixture model. Biophys J 95:4643–4658. https://doi.org/10.1529/biophysj.108.137125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Metropolis N, Rosenbluth AW, Rosenbluth MN et al (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092. https://doi.org/10.1063/1.1699114

    Article  CAS  Google Scholar 

  29. Swendsen RH, Wang J-S (1986) Replica Monte Carlo simulation of spin-glasses. Phys Rev Lett 57:2607–2609. https://doi.org/10.1103/PhysRevLett.57.2607

    Article  CAS  PubMed  Google Scholar 

  30. Viswanath S, Chemmama IE, Cimermancic P, Sali A (2017) Assessing exhaustiveness of stochastic sampling for integrative modeling of macromolecular structures. Biophys J 113:2344–2353. https://doi.org/10.1016/j.bpj.2017.10.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Alber F, Dokudovskaya S, Veenhoff LM et al (2007) The molecular architecture of the nuclear pore complex. Nature 450:695–701

    Article  CAS  PubMed  Google Scholar 

  32. Sali A, Berman HM, Schwede T et al (2015) Outcome of the first wwPDB hybrid/integrative methods task force workshop. Structure 23:1156–1167. https://doi.org/10.1016/j.str.2015.05.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Burley SK, Kurisu G, Markley JL et al (2017) PDB-Dev: a prototype system for depositing integrative/hybrid structural models. Structure 25:1317–1318. https://doi.org/10.1016/j.str.2017.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vallat B, Webb B, Westbrook JD et al (2018) Development of a prototype system for archiving integrative/hybrid structure models of biological macromolecules. Structure. https://doi.org/10.1016/j.str.2018.03.011

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gil VA, Guallar V (2013) pyRMSD: a Python package for efficient pairwise RMSD matrix calculation and handling. Bioinformatics 29:2363–2364. https://doi.org/10.1093/bioinformatics/btt402

    Article  CAS  PubMed  Google Scholar 

  36. Rao JN, Dominguez R (2014) Complex of ATP-actin with the C-terminal actin-binding domain of tropomodulin. https://doi.org/10.2210/pdb4pki/pdb

  37. Schneidman-Duhovny D, Hammel M, Sali A (2010) FoXS: a web server for rapid computation and fitting of SAXS profiles. Nucleic Acids Res 38:541–544

    Article  Google Scholar 

  38. Robinson P, Trnka M, Pellarin R et al (2015) Molecular architecture of the yeast mediator complex. Elife. https://doi.org/10.7554/eLife.08719

  39. Goddard TD, Huang CC, Meng EC et al (2018) UCSF ChimeraX: meeting modern challenges in visualization and analysis: UCSF ChimeraX visualization system. Protein Sci 27:14–25. https://doi.org/10.1002/pro.3235

    Article  CAS  PubMed  Google Scholar 

  40. Carter L, Kim SJ, Schneidman-Duhovny D et al (2015) Prion protein-antibody complexes characterized by chromatography-coupled small-angle X-ray scattering. Biophys J 109:793–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lasker K, Topf M, Sali A, Wolfson HJ (2009) Inferential optimization for simultaneous fitting of multiple components into a cryoEM map of their assembly. J Mol Biol 388:180–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrej Sali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Saltzberg, D. et al. (2019). Modeling Biological Complexes Using Integrative Modeling Platform. In: Bonomi, M., Camilloni, C. (eds) Biomolecular Simulations. Methods in Molecular Biology, vol 2022. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9608-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9608-7_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9607-0

  • Online ISBN: 978-1-4939-9608-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics