Skip to main content

Assessment of Proteolytic Activities in the Bone Marrow Microenvironment

  • Protocol
  • First Online:
Stem Cell Mobilization

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2017))

Abstract

During cytokine- or chemotherapy-induced hematopoietic stem cell (HSC) mobilization, a highly proteolytic microenvironment can be observed in the bone marrow that has a strong influence on adhesive and chemotactic interactions of HSC with their niches. The increase of proteases during mobilization goes along with a decrease of endogenous protease inhibitors. Prominent members of the proteases involved in HSC mobilization belong to the families of matrix metalloproteinases and cathepsins, which are able to degrade chemokines/cytokines, extracellular matrix components, and membrane-bound adhesion receptors. To determine the functional activity of different proteolytic enzymes, zymographic analyses with different substrates and pH conditions can be employed. An involvement of cysteine cathepsins can be determined by the “active site labeling” technique using a modified inhibitor irreversibly binding to the active center of the enzymes. Intact or degraded chemokines and cytokines, which fall into the range between 1000 and 20,000 Da, can readily be detected by MALDI-TOF analysis. These three methods can help to detect proteolytic activities directly involved in the mobilization process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Morrison SJ, Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505:327–334

    Article  CAS  Google Scholar 

  2. Crane GM, Jeffery E, Morrison SJ (2017) Adult haematopoietic stem cell niches. Nat Rev Immunol 17(9):573–590

    Article  CAS  Google Scholar 

  3. Wei Q, Frenette PS (2018) Niches for hematopoietic stem cells and their progeny. Immunity 48(4):632–648

    Article  CAS  Google Scholar 

  4. Gattazzo F, Urciuolo A, Bonaldo P (2014) Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta 1840(8):2506–2519

    Article  CAS  Google Scholar 

  5. Klamer S, Voermans C (2014) The role of novel and known extracellular matrix and adhesion molecules in the homeostatic and regenerative bone marrow microenvironment. Cell Adhes Migr 8(6):563–577

    Article  Google Scholar 

  6. Greenbaum AM, Link DC (2011) Mechanisms of G-CSF-mediated hematopoietic stem and progenitor mobilization. Leukemia 25(2):211–217

    Article  CAS  Google Scholar 

  7. Papayannopoulou T, Craddock C, Nakamoto B, Priestley GV, Wolf NS (1995) The VLA4/VCAM-1 adhesion pathway defines contrasting mechanisms of lodgement of transplanted murine hemopoietic progenitors between bone marrow and spleen. Proc Natl Acad Sci U S A 92(21):9647–9651

    Article  CAS  Google Scholar 

  8. Greenbaum A, Hsu YM, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN, Nagasawa T, Link DC (2013) CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495(7440):227–230

    Article  CAS  Google Scholar 

  9. Levesque J-P, Hendy J, Takamatsu Y, Williams B, Winkler IG, Simmons PJ (2002) Mobilization by either cyclophosphamide or granulocyte colony-stimulating factor transforms the bone marrow into a highly proteolytic environment. Exp Hematol 30(5):440–449

    Article  CAS  Google Scholar 

  10. Marquez-Curtis L, Jalili A, Deiteren K, Shirvaikar N, Lambeir AM, Janowska-Wieczorek A (2008) Carboxypeptidase M expressed by human bone marrow cells cleaves the C-terminal lysine of stromal cell-derived factor-1alpha: another player in hematopoietic stem/progenitor cell mobilization? Stem Cells 26:1211–1220

    Article  CAS  Google Scholar 

  11. Levesque J-P, Takamatsu Y, Nilsson SK, Haylock DN, Simmons P (2001) Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood 98(5):1289–1297

    Article  CAS  Google Scholar 

  12. Staudt ND, Maurer A, Spring B, Kalbacher H, Aicher WK, Klein G (2012) Processing of CXCL12 by different osteoblast-secreted cathepsins. Stem Cells Dev 21(11):1924–1935

    Article  CAS  Google Scholar 

  13. Overall CM (2002) Molecular determinants of metalloproteinase substrate specificity: matrix metalloproteinase substrate binding domains, modules, and exosites. Mol Biotechnol 22(1):51–86

    Article  CAS  Google Scholar 

  14. Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8(3):221–233

    Article  CAS  Google Scholar 

  15. Janowska-Wieczorek A, Marquez LA, Dobrowsky A, Ratajczak MZ, Cabuhat ML (2000) Differential MMP and TIMP production by human marrow and peripheral blood CD34(+) cells in response to chemokines. Exp Hematol 28(11):1274–1285

    Article  CAS  Google Scholar 

  16. Steinl C, Essl M, Schreiber TD, Geiger K, Prokop L, Stevanovic S, Pötz O, Abele H, Wessels JT, Aicher WK, Klein G (2013) Release of matrix metalloproteinase-8 during physiological trafficking and induced mobilization of human hematopoietic stem cells. Stem Cells Dev 22(9):1307–1318

    Article  CAS  Google Scholar 

  17. Shirvaikar N, Marquez-Curtis LA, Shaw AR, Turner AR, Janowska-Wieczorek A (2010) MT1-MMP association with membrane lipid rafts facilitates G-CSF—induced hematopoietic stem/progenitor cell mobilization. Exp Hematol 38(9):823–835

    Article  CAS  Google Scholar 

  18. Golan K, Vagima Y, Goichberg P, Gur-Cohen S, Lapidot T (2011) MT1-MMP and RECK: opposite and essential roles in hematopoietic stem and progenitor cell retention and migration. J Mol Med (Berl) 89(12):1167–1174

    Article  CAS  Google Scholar 

  19. Levesque JP, Liu F, Simmons PJ, Betsuyaku T, Senior RM, Pham C, Link D (2004) Characterization of hematopoietic progenitor mobilization in protease-deficient mice. Blood 104:65–72

    Article  CAS  Google Scholar 

  20. Brix K, Dunkhorst A, Mayer K, Jordans S (2008) Cysteine cathepsins: cellular roadmap to different functions. Biochimie 90(2):194–207

    Article  CAS  Google Scholar 

  21. Reiser J, Adair B, Reinheckel T (2010) Specialized roles for cysteine cathepsins in health and disease. J Clin Invest 120(10):3421–3431

    Article  CAS  Google Scholar 

  22. Staudt ND, Aicher WK, Kalbacher H, Stevanovic S, Carmona AK, Bogyo M, Klein G (2010) Cathepsin X is secreted by human osteoblasts, digests CXCL-12 and impairs adhesion of hematopoietic stem and progenitor cells to osteoblasts. Haematologica 95:1452–1460

    Article  CAS  Google Scholar 

  23. Lapidot T, Petit I (2002) Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol 30:973–981

    Article  CAS  Google Scholar 

  24. Vandooren J, Geurts N, Martens E, Van den Steen PE, Opdenakker G (2013) Zymography methods for visualizing hydrolytic enzymes. Nat Methods 10:211–220

    Article  CAS  Google Scholar 

  25. Inanc S, Keles D, Oktay G (2017) An improved collagen zymography approach for evaluating the collagenases MMP-1, MMP-8, and MMP-13. BioTechniques 63(4):174–180

    Article  CAS  Google Scholar 

  26. Yasumitsu H (2017) Serine protease zymography: low-cost, rapid, and highly sensitive RAMA casein zymography. Methods Mol Biol 1626:13–24

    Article  CAS  Google Scholar 

  27. Fonović M, Bogyo M (2007) Activity based probes for proteases: applications to biomarker discovery, molecular imaging and drug screening. Curr Pharm Des 13(3):253–261

    Article  Google Scholar 

  28. Cho YT, Su H, Wu WJ, Wu DC, Hou MF, Kuo CH, Shiea J (2015) Biomarker characterization by MALDI-TOF/MS. Adv Clin Chem 69:209–254

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Maurer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Maurer, A., Klein, G., Staudt, N.D. (2019). Assessment of Proteolytic Activities in the Bone Marrow Microenvironment. In: Klein, G., Wuchter, P. (eds) Stem Cell Mobilization. Methods in Molecular Biology, vol 2017. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9574-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9574-5_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9573-8

  • Online ISBN: 978-1-4939-9574-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics