Skip to main content

Analysis of Biomechanical Properties of Hematopoietic Stem and Progenitor Cells Using Real-Time Fluorescence and Deformability Cytometry

  • Protocol
  • First Online:
Stem Cell Mobilization

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2017))

Abstract

Stem cell mechanics, determined predominantly by the cell’s cytoskeleton, plays an important role in different biological processes such as stem cell differentiation or migration. Several methods to measure mechanical properties of cells are currently available, but most of them are limited in the ability to screen large heterogeneous populations in a robust and efficient manner—a feature required for successful translational applications. With real-time fluorescence and deformability cytometry (RT-FDC), mechanical properties of cells in suspension can be screened continuously at rates of up to 1,000 cells/s—similar to conventional flow cytometers—which makes it a suitable method not only for basic research but also for a clinical setting. In parallel to mechanical characterization, RT-FDC allows to measure specific molecular markers using standard fluorescence labeling. In this chapter, we provide a detailed protocol for the characterization of hematopoietic stem and progenitor cells (HSPCs) in heterogeneous mobilized peripheral blood using RT-FDC and present a specific morpho-rheological fingerprint of HSPCs that allows to distinguish them from all other blood cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dicke KA, van Noord MJ, Maat B et al (1973) Identification of cells in primate bone marrow resembling the hemopoietic stem cell in the mouse. Blood 42:195–208

    CAS  PubMed  Google Scholar 

  2. Abramson S (1977) The identification in adult bone marrow of pluripotent and restricted stem cells of the myeloid and lymphoid systems. J Exp Med 145:1567–1579. https://doi.org/10.1084/jem.145.6.1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Visser JW, Bauman JG, Mulder AH et al (1984) Isolation of murine pluripotent hemopoietic stem cells. J Exp Med 159:1576–1590

    Article  CAS  PubMed  Google Scholar 

  4. Bhatia M, Wang JC, Kapp U et al (1997) Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc Natl Acad Sci U S A 94:5320–5325. https://doi.org/10.1073/pnas.94.10.5320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bhatia M, Bonnet D, Murdoch B et al (1998) A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nat Med 4:1038–1045. https://doi.org/10.1038/2023

    Article  CAS  PubMed  Google Scholar 

  6. Burt RK, Loh Y, Pearce W et al (2008) Clinical applications of blood-derived and marrow-derived stem cells for nonmalignant diseases. JAMA 299:925–936. https://doi.org/10.1001/jama.299.8.925

    Article  CAS  PubMed  Google Scholar 

  7. Cutler C, Antin JH (2001) Peripheral blood stem cells for allogeneic transplantation: a review. Stem Cells 19:108–117. https://doi.org/10.1634/stemcells.19-2-108

    Article  CAS  PubMed  Google Scholar 

  8. Arndt K, Grinenko T, Mende N et al (2013) CD133 is a modifier of hematopoietic progenitor frequencies but is dispensable for the maintenance of mouse hematopoietic stem cells. Proc Natl Acad Sci U S A 110:5582–5587. 10.1073/pnas.1215438110/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1215438110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sharma S, Gurudutta GU, Satija NK et al (2016) Stem cell c-KIT and HOXB4 genes: critical roles and mechanisms in self-renewal, proliferation, and differentiation. Stem Cells Dev 778:755–778. https://doi.org/10.1089/scd.2006.15.755

    Article  Google Scholar 

  10. Paschke S, Weidner AF, Paust T et al (2013) Technical advance: inhibition of neutrophil chemotaxis by colchicine is modulated through viscoelastic properties of subcellular compartments. J Leukoc Biol 94:1091–1096. https://doi.org/10.1189/jlb.1012510

    Article  CAS  PubMed  Google Scholar 

  11. Lautenschlager F, Paschke S, Schinkinger S et al (2009) The regulatory role of cell mechanics for migration of differentiating myeloid cells. Proc Natl Acad Sci U S A 106:15696–15701. https://doi.org/10.1073/pnas.0811261106

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ekpenyong AE, Whyte G, Chalut K et al (2012) Viscoelastic properties of differentiating blood cells are fate- and function-dependent. PLoS One 7(9):e45237. https://doi.org/10.1371/journal.pone.0045237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. González-Cruz RD, Fonseca VC, Darling EM (2012) Cellular mechanical properties reflect the differentiation potential of adipose-derived mesenchymal stem cells. Proc Natl Acad Sci U S A 109:E1523–E1529. https://doi.org/10.1073/pnas.1120349109

    Article  PubMed  PubMed Central  Google Scholar 

  14. Maloney JM, Nikova D, Lautenschläger F et al (2010) Mesenchymal stem cell mechanics from the attached to the suspended state. Biophys J 99:2479–2487. https://doi.org/10.1016/j.bpj.2010.08.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Radmacher M (2007) Studying the mechanics of cellular processes by atomic force microscopy. Methods Cell Biol 83:347–372. https://doi.org/10.1016/S0091-679X(07)83015-9

    Article  CAS  PubMed  Google Scholar 

  16. Hochmuth RM (2000) Micropipette aspiration of living cells. J Biomech 33:15–22. https://doi.org/10.1016/S0021-9290(99)00175-X

    Article  CAS  PubMed  Google Scholar 

  17. Guck J, Ananthakrishnan R, Mahmood H et al (2001) The optical stretcher: a novel laser tool to micromanipulate cells. Biophys J 81:767–784. https://doi.org/10.1016/S0006-3495(01)75740-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lincoln B, Wottawah F, Schinkinger S et al (2007) High-throughput rheological measurements with an optical stretcher. Methods Cell Biol 83:397–423. https://doi.org/10.1016/S0091-679X(07)83017-2

    Article  CAS  PubMed  Google Scholar 

  19. Mietke A, Otto O, Girardo S et al (2015) Extracting cell stiffness from real-time deformability cytometry: theory and experiment. Biophys J 109:2023–2036. https://doi.org/10.1016/j.bpj.2015.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Otto O, Rosendahl P, Golfier S et al (2015) Real-time deformability cytometry as a label-free indicator of cell function. Conf Proc IEEE Eng Med Biol Soc 2015:1861–1864

    CAS  Google Scholar 

  21. Mokbel M, Mokbel D, Mietke A et al (2017) Numerical simulation of real-time deformability cytometry to extract cell mechanical properties. ACS Biomater Sci Eng 3:2962–2973. https://doi.org/10.1021/acsbiomaterials.6b00558

    Article  CAS  PubMed  Google Scholar 

  22. Rosendahl P, Plak K, Jacobi A et al (2018) Real-time fluorescence and deformability cytometry. Nat Methods 15(5):355–358. https://doi.org/10.1038/nmeth.4639

    Article  CAS  PubMed  Google Scholar 

  23. Herbig M, Kräter M, Plak K et al (2018) Real-time deformability cytometry: label-free functional characterization of cells. In: Hawley TS, Hawley RG (eds) Flow cytometry protocols. Springer New York, New York, NY, pp 347–369

    Chapter  Google Scholar 

  24. Toepfner N, Herold C, Otto O et al (2018) Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood. elife 7:1–22. https://doi.org/10.7554/eLife.29213

    Article  Google Scholar 

  25. Elson EL (1988) Cellular mechanics as an indicator of cytoskeletal structure and function. Annu Rev Biophys Biophys Chem 17:397–430. https://doi.org/10.1146/annurev.bb.17.060188.002145

    Article  CAS  PubMed  Google Scholar 

  26. Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463:485–492. https://doi.org/10.1038/nature08908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guzniczak E, Mohammad Zadeh M, Dempsey F et al (2017) High-throughput assessment of mechanical properties of stem cell derived red blood cells, toward cellular downstream processing. Sci Rep 7:1–11. https://doi.org/10.1038/s41598-017-14958-w

    Article  CAS  Google Scholar 

  28. Zhu G, Trung Nguyen N (2010) Particle sorting in microfluidic systems. Micro Nanosyst 2:202–216. https://doi.org/10.2174/1876402911002030202

    Article  Google Scholar 

  29. Nawaz AA, Chen Y, Nama N et al (2015) Acoustofluidic fluorescence activated cell sorter. Anal Chem 87:12051–12058. https://doi.org/10.1021/acs.analchem.5b02398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Martin Bornhäuser from the University Hospital Dresden for providing the patients material, Zellmechanik Dresden for providing materials for graphics, and the Microstructure Facility at the Center for Molecular and Cellular Bioengineering (CMCB) at Technische Universität Dresden (in part funded by the State of Saxony and the European Regional Development Fund) and Alejandro Riviera Prieto for help with the production of RT-DC chips. This work was financially supported by the Alexander von Humboldt-Stiftung (Alexander von Humboldt Professorship to J.G.) and the DKMS Mechthild Harf Research Grant (DKMS-SLS-MHG-2016-02 to A.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Jacobi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jacobi, A., Rosendahl, P., Kräter, M., Urbanska, M., Herbig, M., Guck, J. (2019). Analysis of Biomechanical Properties of Hematopoietic Stem and Progenitor Cells Using Real-Time Fluorescence and Deformability Cytometry. In: Klein, G., Wuchter, P. (eds) Stem Cell Mobilization. Methods in Molecular Biology, vol 2017. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9574-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9574-5_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9573-8

  • Online ISBN: 978-1-4939-9574-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics